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PREFACE

As an undergraduate of Physics, I often wondered how the profes-
sional engineers were actually using computers to solve all of thpse
intimidating equations. Therefore, it was very satisfying for me to
come to AFIT and to have the opportunity to study numerical analysis
and computer systems. This thesis gave me a chance to apply that know-
ledge to an important problem and to make a contribution that might
improve the capabilities of the Space Shuttle. This project also
taught me some new things about matrix theory, and it was my first
chance to work extensively with a main-frame scientific computer. It
wasn't easy, but I am grateful for the experience.

Thanks are due to Captain James Hodge for his frequent assistance
concerning the use of the HEATEST Program in particular and the CYBER
computer in general. Captain David Audley was most heipful concerning
the mathematical operations of the HEATEST Program. Of course, the
overall guidance and patience of Dr. Dennis Quinn has been invaluable
to the successful completion of this thesis.

Finally, I would like to apologize to my wife, Ihok,for my

frequent absence during her first 18 months of residence in the United

. States.
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A,8,C,D,T,U Coefficient Matrices (L x L)
CA,CB... Material Specific Heat
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o

Freestream Reynolds Number

vy

tf s Score (Vector of Length K)

b t Time

o U Vector for Temperature Field (Vector Length L)
E? U Sensitivity of Temperature to Model Parameters

(K Vectors of Length L)

Free Space Temperature
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\ ABSTRACT
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A

N

A computer program named HEATEST required excessive éomputer time
to evaluate the matrix Riccati equation for temperature covariance.
Alternative numerical methods were employed to compute the Riccati
equation, and the HEATEST program execution time was reduced by 70%.
However, cumulative temperature covariance rose from 2.45 to 3.28 degrees.
This rise was considered insignificant.

" A survey was conducted of methods for computing the matrix exponen-
tial. A triangular matrix decomposition method proved to be more efficient
than summing the Taylor series, especially for matrices with a large
condition number. This substitution produced an overall 10% aecrease
in HEATEST execution time with comparable accuracy. °

-Simpson's Rule was used to evaluate the matrix Riccati integral
term. The accuracy of this method was in the range of 5 to 9 significant
digits, and computation time for the integral term was reduced by 90%
for a matrix of order 13. This substitution prompted the rise in the
covariance. _

 FORTRAN program modules and numerical examples are included.

N\




I. INTRODUCTION

PROBLEM DESCRIPTION

This thesis attempts to solve one aspect of the problem of deter-
- mining allowable limits for the reentry trajectory envelope of the Space
Transportation System (STS or Space Shuttle). The Air Force Flight Test
Center developed a strategy to determine this reentry envelope quantita-
tively. The strategy depended on the use of a computer program named
HEATEST to analyze temperature data recorded during Shuttle reentry and
to compute the values of certain aerothermodynamic parameters by means
‘: of an iterative estimation technique.
. The HEATEST program was used successfully to process thermal data
_ from wind tunnels, the Shuttle simulator, and a reentry maneuver during
l.. ‘iﬁ the first Shuttle test flight. The major drawback was that the program
'7 required large amounts of expensive computer processor time. According
t~ “lodge, 1982, the Air Force Flight Test Center expended a substantial
portion of a $50,000 budget on computer time to operate the HEATEST pro-
gram during the first year after its development.
Computer experts at Edwards AFB used a software profiling tool
to determine that most of the processing time was absoruved in performing
matrix multiplications while evaluating this matrix Riccati equation:
P(E) - eAAtP(t:_l)eATAt . oM [/t" e‘Ath'ATtdt]eAT" (1)

- tn-l
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where

A = a tridiagonal system matrix

AT = the transpose of the A matrix

At = tn -ty time increment of heat propagation

A = a dummy time variable

Q = a system error matrix

P(t;) =a pr1ori value of propagated temperature
- covariance at time t

P(tn-l) = a posteriori value of covariance at t1me

n-l
The required computation time increased rapidly as a function of
the size of the matrices. For practical time limits, the size of the
system matrix A was limited to order 13 (representing 13 temperature
nodes), which effectively modelled only the outer inch of the Shuttle

thermal protective system (TPS). Subsequent Shuttle missions will per-

form test maneuvers at a later time in the reentry flight profile when
heat will have penetrated deeper into the TPS, so it would be desirable
to process more nodes (and larger matrices) to adequately model the
true Shuttle heat parameters. This problem has a particular urgency at
the time of this thesis, because planned Shuttle landings at Vandenburg

AFB will require trajectories with increased heat stress.

S STATIMMAARALS - ARkSECAL I

OBJECTIVES

The main objective of this project was to investigate methods

Lol ol ad an e Lo g
Lo e .

-

for improving the performance of the HEATEST program. Specifically,

M {

the project had the following goals:

A. To make a baseline performance measurement of the numerical
At

vy

- method originally used to calculate the exponential matrix e

2

Ty oYy




The required processor time was to be measured as a function of the
order of métrix A.

B. To make a literature search of other methods for computing
the exponential matrix.

C. To implement alternative numerical methods on the AFIT
CYBER computer in the Fortran 5 language, and to assess their relative
performance.

D. Hopefully, to discover an improved computation method, and

to incorporate that technique into the HEATEST program.
;> E. To measure the extent of any improvement in overall HEATEST
?‘ program execution time which is produced by improved computation of the
matrix exponential.

F. To use standard software engineering practices when modifying
the HEATEST program. These are to include modular design, top-down

organization, and comprehensive documentation including source references.

—
9

The original goals were refined and extended as the research

progressed. The literature search resulted in one very promising approach

to the computation of the matrix exponential. The investigation of less

vy

favorable alternatives was sacrificed in order to devote full effort

b fhalng ma
.

toward implementing a triangular matrix decomposition technique. This

q
p:.

- technique then prompted an idea for efficiently approximating the integral
r-

4 term of the Riccati equation by means of Simpson's rule. These numerical
-

- q methods were ultimately incorporated into the HEATEST program with great
&

! success at reducing overall program execution time.
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INITIAL RESEARCH STRATEGY

One possible solution might be to obtain an array processor, a
computer logic unit whose architecture is optimized toward the efficient
handiing of matrix computations. This would not be very convenient and,
more importantly, the rapid increase of processing time in response to
matrix size suggests that more efficient numerical methods would be a
better solution.

Equation (1) is seen to consist of two terms, each of which is
computed in the HEATEST program by summing a separate Taylor series
expansion. Furthermore, these series must be recomputed over many
subintervals of time in order to guarantee mathematical stability and
accuracy. The time consuming matrix multiplication was necessary for
both Taylor series program modules, which are named MEXP and INTEG,
respectively. This author chose to investigate alternative methods for

t in an attempt to produce a better

computing the matrix exponential e?
MEXP routine.

The foi]owing methods were intially proposed, to be supplemented
later by methods from a 1iteratufe search:

A. Summing a smaller of terms in the Taylor series.

B. Taking advantage of the assumed symmetric nature of the A
matrix in order to convert it to a simi]af diagonal form.

C. Developing a specialized matrix multiplication algorithm which
is optimized toward tridiagonal matrices in order to reduce the required
number of arithmetic operations.

D. Converting the A matrix to a similar triangular form, and

developing a multiplication algorithm which is optimized toward that

form.




These possibilities will be examined in the next two chapters of
this thesis. The information in this chapter was drawn from Hodge,

Phillips, and Audley, 1981 and from Hodge, 1982.

Aa - P P A PPN TETPUE W P SO . RGN WY SN N VUL S VO v - JPRCHNIYE SRS 3 -...;_44_;;."




N W e - —'.-l'-,l '....I.‘

II. SURVEY OF COMPUTATION METHODS FOR THE MATRIX EXPONENTIAL

INTRODUCTION

Computation of the matrix exponential eAt

is an important general
mathematical problem with wide application to several types of physical
processes. Many mathematical models involve systems of linear, constant

coefficient ordinary differential equations of the form

x'(t) = Ax(t)
where A is a coefficient matrix
x(t) is a solution vector
x(0) = xg is the initial condition vector

x' represents the first derivative of x
The solution to this equation is given by

At
Xqe

x(t) = e

This review of computation techniques effectively begins and ends
with the comprehensive survey by Moler and Van Loan, 1978. That survey
evaluated 19 different practical methods for computing the matrix exponen-

tial. The methods were grouped into five general classes and their rela-

o RALAL AL
K N Lt . .

tive advantages were assessed. The methods in the survey are oriented
toward the solution of matrices A whose order n is less than a few
hundred, so the constituent elements can be readily stored in the primary
i memory of contemporary computers.

Other literature sources were examined from the references quoted
by Moler and Van Loan, 1978, from cross references, and from articles
¥ listed in the Government Records Annual Index (GRAI). However, many of
these other papers specifically referred to the larger survey (see, for

6
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instance: Van Loan, 1977:981 and Ward, 1977:610) or else were directly
referenced by Moler and Van Loan, 1978. No other article was found
which contained either a comparison of methods or which had a comparable
discussion of practical computer imp]éhentation considerations.

The remainder of this section will esséntia]ly consist of selected
extracts from Moler and Van Loan, 1978. Unless otherwise indicated, every
passage in quotation marks is from this source. The most interesting
methods will be preseﬁted and critiqued as to their usefullness in

solving the problem at hand.

SERIES METHODS

An algorithm can be immediately developed from the Taylor series

expansion
ferrasp’or e, (2)

One straightforward approach would be to sum the series by adding terms
until the 1imit of machine precision is exceeded. Unfortunately, this
naive approach has a serious flaw which makes it useful only for setting
a lower bound on the efficiency of calculations.

The matrix exponential has a property which every algorithm must

At may grow before they decay.

overcome. As t increases the elements of e
This is true to some extent for any nonsymmetric matrix. This results
in a hump which is displayed in Figure 2. An example will show why this

is a problem. "Take the input

A= [-49 24]=11 3 -1 0 1 3] -1
(3)
-64 31 2 4 0 -17 2 4
5 6

= ,95 x 107", the first 59 terms in

Using a machine precision of 16~

7
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the Taylor series expansion are summed to obtain the output

e = [ -22.25880 -1.432766
(4)
-61.49931 -3.474280
Analytic calculation of
=1 3lle! oll1 3| -1
- (5
2 allo e17}]2 4 )
gives an output to six decimal places of
eh = | -0.735759 0.551819
(6)

-1.471518 1.103638

which is not even close to the first solution. The problem is with the
intermediate results A16/16! and A17/17! which have elements greater than
106 in magnitude but of opposite sign. Therefore, the intermediate elements
have absolute errors which are larger than the final result. It is impor-
tant to realize that the problem is with arithmetic truncation and not

with the series truncation."”

The matrix exponential can also be calculated with a series of PADE
rational approximants or continued partial fractions. Moler and Van Loan,
1978:808 state that "roundoff error makes PADE approximants unreliable."
_Furthérmore, difficulties with matrix inversion make this method inaccurate
"when the A matrix has widely spread eigenvalues." This is exactly the
type of matrix that is generated by the HEATEST program.

The most sophisticated method for using a series approximation
is called "scaling and squaring". This is the same time-consuming method
that was originally employed in HEATEST in the module MEXP. "Roundoff
error and computing costs tend to increase as t'lAIl, or the spread of

8
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the eigenvalues, increases." This is controlled in scaling and squaring

by "exploiting the unique exponential property eh = (eA/m)m.“

“The idea is to choose m to be a power of two for which eA/m can

be reliably computed, and then to form (eA/m)m by repeated squaring. One
common criterion is to choose m such that ”A|| /mgl."  The HEATEST module
MEXP tries to save a step by choosing m such that “Al[/m§3. This technique
tends to keep down the hump. "The scaling and squaring algorithm is one

of the most accurate that we know."

POLYNOMIAL METHODS

The matrix exponential has many interesting polynomial decomposi-
tions. Unfortunately, they contain serious problems for computétional
purposes.

CAYLEY-HAMILTON THEOREM: Any function of A can be expressed in
terms of a polynomial in I,A,..., AL This implies that Pt can be

expressed as a polynomial in A with analytic coefficients in t:

n-1

At - JZ,; as(t)ad (7y

Moler and Van Loan, 1978:816 describe a means of generating the func-
tions aj(t). However, this method requires a priori knowledge of the
characteristic polynomial of A, is affected by roundoff error, and is

structurally similar to the naive form of the Taylor series.

LAGRANGE INTERPOLATION, NEWTON INTERPOLATION, and the VANDERMONDE
MATRIX: eAt can be expressed in terms of each of these well-known
formulas. However, these mthods require a priori knowledge of the eigen-
values of A, they are "algorithms of the order of n4 operations (pro-

hibitive except for small n),"” and they suffer problems when the

9




eigenvalues are nearly equal (confluent).

INVERSE LAPLACE TRANSFORMS: These "inverse transforms can be
expressed as a power series in t." Other techniques can also be used such
as Heaviside expansion, fThese methods are also 0(n4) and are affected

by roundoff error."

ORDINARY DIFFERENTIAL EQUATION METHODS
At

""Since e"" is a solution to ordinary differential equations, it
is possible to consider methods based on numerical integration." Many
powerful computer programs have been developed for solving 0.D.E.'s.
"Methods based on single-step formulas, multi-step formulas and variable
step size" all have two features in common: they are relatively "easy

to use"”, and they are "relatively time-consuming.” "The 0.D.E. programs

are designed to solve a single initial value system
x'=f(x,t) with x(0) = x4 . (8)

and to obtain the so]ution at many values of t."

General 0.D.E. solvers all suffer from "not taking advantage of
the linear, constant coefficient nature” of the matrix exponential
problem. Instead, they traverse "a sequence of values 0 = to,tl....,
tn = t." Moler and Van Loan, 1978:813 test three published programs
* that are general purpose 0.D.E. solvers. The results show mainly

that these programs are inconsistent and "very inefficient" for computing

the matrix exponential in their present form. "They repeatedly multiply

various vectors by the matrix A because, so far as they know, it may

have changed since the last multiplication."”

10
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MATRIX DECOMPOSITION METHODS

Methods "based on factorizations or decompositions of the matrix

A" are "likely to be the most efficient for problems involving the larger

matrices and for repeated evaluations of eAt.“ If A is symmetric, then

these methods are particularly simple and effective.

"A11 of the matrix decompositions are based on similarity trans-

formations of the form A = SBS'I. At

At Bte-1

The power series definition of e

implies e"~ = SE-"S”". The idea is to find an S which is easy to com-

pute. One difficulty is that S may be close to being singular (not

At may be difficult to compute accurately."

invertible), which means that e
DIAGONALIZATION: "The naive approach is to take S to be the
matrix whose columns are eigenvectors of A." Then we can write AV = VD
where V is the matrix of column vectors
D is the matrix of diagonal eigenvalues

Dt

Then the exponential e - of D is trivially computed by replacing each

eigenvalue A in D by e)‘t=

There are several problems that can arise when using this method.
The first, "a theoretical difficulty, occurs when A does not have a com-
plete set of linearly independent eigenvectors and is therefore defective.
In this case, the method is unworkable because there is no invertible
matrix V of eigenvectors."

The second problem, a practical difficu]fy, occurs when two
eigenva]ﬁes are nearly equal (confluent), but not exactly so. "This can

be illustrated by the example A = |\ «
0 u

11
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where (1 - u) is small but not negligible, computation of the divided

difference
ext - eut
A -U

can result in a large relative error," especially when multiplied by
large a.

A third difficulty arises from calculation of vl

This is another
source of inaccuracy when using this naive method to compute the matrix
exponential.

JORDAN CANONICAL FORM (JCF): "In principle, the problem caused
by defective systems of eigenvectors can be solved by using a similarity
transformation to the Jordan canonical form." The JCF is 2 special form
of matrix which consists of all zero's except for square blocks of
non-zero numbers along the main diagonal. These Jordan blocks reflect
the vector subspaces that define the similarity class to which the matrix

"The exponential of each Jordan block can be calculated in

belongs.

closed form, and e~ = Pe , Where J = Jl,.... J_", a concatenation

n 9
of Jordan block submatrices.

"For example,

P i
if Ji = Ai 1 0 O
0 » 1 0
0 0 1
0 0 0 (9)

12
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LO 0 0 ] (10)
The difficulty with this method is that it cannot be computed using

floatfng point arithmetic. A single rounding error at the limit of

machine precision may cause a multiple eigenvalue to become distinct

or vice versa,.which would alter the structure of J and P."A For example,

two matrices

will have different Jordan forms for any non-zero error e, no matter
how small.

SCHUR DECOMPOSITION: A more reliable method is to use the so-
cal]ed Schur transformation A = UTU'I, where U is a unitary (orthogonal)

matrix and "T is a triangular matrix that will always exist if A has

" real eigenvalues. If A has complex eigenvalues, then T will be quasi-

A Tt, -1

triangular with 2-by-2 blocks on the main diagonal." The e b oeltyl,
This method is especially convenient because of the well-known property
that the orthogonality of U implies that the inverse matrix U'1 is equal
to the transpose matrix UT.

The only difficulty occurs when the matrix T has eigenvalues that
are nearly confluent, which can induce a magnification of roundoff error
when computing eTt. "This is a general problem for all matrix decomposi-

tions of the form A = SBS'1 and involves two objectives:

13
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A. Make B close to diagonal so that eBt

is especially easy to
compute.” The Jordan form epitomizes this objective.

"B. Make S well conditioned so that computational errors will
not be magnified." This goal is realized by the Schur method.

A practical compromise can be achieved between these objectives.
The idea is to "cluster the nearly confluent eigenvalues" into block
diagonal form, using a somewhat non-orthogonal matrix S if necessary.
Then special techniques can be used to compute esit for each biock.
The simplest technique would be to replace each eigenvalue in the block

by the average of all those in the block. The best criterion for cluster-

ing eigenvalues remains to be determined.

SPLITTING METHODS

Moler and Van Loan discuss a special characteristic of the matrix -

B/meC/m)m. "This approach to

C

exponential and present the formula eh = (e

A has potential interest when the exponentials eB and e

computing e
can be accurately and easily computed.”" Then it might be convenient
to split A=B + C.

"The efficiency of this technique is somewhat difficult to assess
because it depends strongly on the scalar" elements of A. Under general

conditions, the splitting method is considered to be much less efficient

than simply scaling and squaring the Taylor series.

OVERALL EVALUATION OF THE HETHODS

A large segment of the available project time was dedicated to
studying the survey by Moler and Van Loan, 1978, and a selection of the
numerous papers that are referenced by them. For purposes of this thesis,
the most attraéti?e computational methods were extracted from the survey,

14
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organized as presented above, and evaluated for application to the
problem at hand.

Polynomial techniques were quickly discarded because they
requjre prior knowledge of the eigenvalues, and because they generally
require 0(n4) floating point operations for computer computations.

The splitting method is generally untried and does not offer
any special advantage for the purposes of the HEATEST program.

Ordinary differential equation solvers seem to have botentia]
for general application to computing functions such as the matrix
exponential, and the development of an efficient software program could
possibly form the basis for a dissertation. That type of investigation
seems to be beyond the scope of this thesis, howevef. Only series and
matrix decompositions remain for serious consideration.

A statement is made (Moler and Van Loan, 1978:p. 827) that the
only generally competitive series method is that of scaling and squaring.
This technique was the one used in the original HEATEST implementation,
calculating up to 38 terms of the series for each subinterval of time
for a matrix of order n = 13. The extensive matrix multiplications
required for computing this series is the driving factor behind the
excessive use of computer processor time, even though module MEXP uses
the Cayley-Hamilton theorem to increase efficiency. |

Matrix decomposition seemed to offer the best potential for investi-
gation. The orthogonal property of the U transformaticn matrix allows the
inverse U'1 to be easily obtained because it equals the transpose UT.
and it also preserves the condition number (see Chapter V for definition)
of the matrix without magnifying the roundoff errors that are introduced

by exponentiation.
15
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A decision was made to investigate the Schur technique for matrix
decomposition. At the same time, the form of the A matrix could be
examined for possible ways of developing a specialized multiplication
algorithm which could be used to more efficiently calculate the original
series summation. This investigation and program development will be

detailed in the next section.

16




IT11. COMPUTING THE MATRIX EXPONENTIAL (DEVELOPMENT OF MEXP2)

THEORY

The HEATEST program uses a module named MEXP to compute eAt

by
means of the scaling and squaring method. MEXP and its support modules

are listed in Appendix A, along with a structure chart which diagrams

their interaction. The first efforts to develop an improved module, MEXPZ,

were based on the idea of a more efficient matrix multiplication algorithm

which would decrease the computation time by a linear factor. This
_ required an examination of the characteristics that define the typical
h‘ A matrix to be processed.
E A random system matrix of order 10 was obtained from HEATEST
!
[ and used as a test case for investigation. This matrix is displayed in
Figure 3 and is seen to have the following properties:

A. Tridiagonal form.

B. Not symmetric, but nearly so.
ii C. Diagonally dominant. This means that each diagonal value
2 is greater than the sum of all other numbers in that row or column.
D. A1l entries in the main diagonal have negative sign, while
5 all entries in the off-diagonal rows have positive sign.
* E. A wide range of values,

These properties will be seen to have great significance.

Ty

The first consideration was to attempt to exploit the inherent

-

sparseness of the tridiagonal matrix. Several published computer codes
are already available for manipulating tridiagonal matrices and for

storing the non-zero values in a reduced form which saves on primary

Fat Sl o ot cun cil ol aih ses an SN 4
-t .

computer memory. One source is the International Mathematics and
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Statistics Library (IMSL). This idea proved not to be useful for at

least two reasons. First of all, the reduced form of storage would
not help unless implemented throughout the entire HEATEST program, which
was not feasible in the time available. More importantly, the tri-
diagonal form is not closed under the operation of matrix multiplicuatien,
as shown in Figure 4. It can be seen that the resulting matrix bandwidth
increases by two off-diagonal rows after each operation. This property
is not conducive to a specialized algorithm for calculating series
summations.

A more promising candidate would be the triangular form shown
in Figure 5, which is closed under matrix multiplication. The sparse-
ness of the triangular form can easily be exploited, as seen in Figure
7. The full formula for upper triangular multiplication is shown in
Figure 6, and the resulting non-zero terms are shown in Figure 7. It
would not be difficult to devise a computer code tnat would only include
the resulting non-zero terms in its computations. The efficiency of
this technique could be significant. By looking at diagonals, one
can see by inspection that the number of resulting non-zero element

multiplications can be described as

1(n) + 2(n - 1) + ... + n(1)

n

:E: K{n +1 - K)

K=1 n n

(e Y k- K (11)
K=1 K=1

=(n+1)n(n +1) -n(2n+1)(n+1) =n(n+1)[3(n+1) - (2n+1)
6

6 6
=n(n + 1)(n +2)  This sum has the value .22(n3) for n = 10, and it
6
approaches the value .16(n3) as n increases. Compare this to the usual

3

matrix multiplication which requires n™ operations.

18




A AR e N e = Y Y . e . At AR B B et LY

o
3
g

s aa e mun 4

‘. A

B S ae g e e L

Sl

F

P OLIV PRI VAP U S Y

The algorithm above appears to be a promising technique for

efficient computation of triangular series summations. A triangular

Tt for

a matrix T which is obtained from the Schur decomposition of A = UTU'l.

scaling and squaring series method could be used to evaluate e

This interesting innovation was never tested, however, due to a lack
of project time and the successful implementation of an even more
efficient method.

Moler and Van Loan, 1978:823, recommend using a different technique
which can calculate any analytic function of a triangular matrix. This
method is described in Parlett, 1976, and Fortran language program
modules are available from Parlett, 1974. This method is based on a
recurrence relation that exists among the elements of the triangular
function matrix F, where F is obtained by using the algorithm of
Equations (12) and (13).

A lemma is presented (Parlett, 1976:118) that if T is a block
upper triangular matrix, then a function matrix F = f(T) is also of
block upper triangular form with the same block structure. The method

starts by first computing the diagonal blocks (or elements) of F from

Frp =,exp(Trr). Then the upper triangular blocks (elements) can be
determined from the formula
s-r-1
Terfrs = FrsTss = :E: (Fr,r+k Tr+k,s B Tr,s-k Fs-k,s) for r<s (12)
k=0

for successive diagonals, moving in turn away from the main diagonal.

Each block Frs is determined as a linear combination of lower diagonal
blocks which are in row r and column s of the function matrix F. Then
the right side of the equation is known, and the elements of block Frs

19
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are obtained by solving a set of simultaneous equations

TrrFrs - FrsTss =R (13)

Three cases can occur:

A. The Schur matrix is strictly triangular and the eigenvalues
(diagonal elements) are all distinct. This is the simplest case, and
the calculations are straightforward. A Fortran program module is
supplied by Parlett, 1974:15.

B. The Schur matrix T has quasitriangular form with at least
one 2-by-2 block on the main diagonal, and the eigenvalues are distinct.
This case is illustrated in Figure 8. The computation of F in this case
proves to be a more complicated programming exercise. The block structure
must be discerned, block multiplication must be performed with variable
size blocks, and the resulting linear system equation must be solved
with a possible need for pivoting,

C. The Schur matrix T has confluent eigenvalues, in particular
when Trr = Tss' In this situation, the basic recurrence formula breaks
down and an alternative must be used. In addition, calculations in finite
precision arithmetic can return inaccurate results when Trr is very close,
but not exactly equal, to Tss' This case can be treated as follows:

1. Eigenvalues that are very close can be replaced by a confluent
eigenvalue which is equal to the average of the similar eigenvalues. The
menaing of "very close” is not specifically defined.

2. Confluent values are treated with an alternate formula
(Parlett, 1974:3) which is derived from Newton's form of the interpolating
polynomial and which is manipulated to obtain Frs'

3. Then the general formula (13) can be applied. This case

20




T
A
4
L
4
1
[
\
1

"'7..‘{.'\'. B

requires on the order of n4 floating point arithmetic operations. A

Fortran program module is supplied for this case, also (Parlett, 1974:16).

IMPLEMENTATION

‘!l The development process was started by generating a baseline
u example. Under usual software development conditions, the most efficient

strategy is to use the main program as the driver for new submodules.

L an

L

‘ii However, HEATEST was too large, in both memory and required execution

i time, to be operated from an interactive CYBER computer terminal with

the desired immediate turnaround time. Therefore, the sample matrix

in Figure 3 was obtained from HEATEST and used as a test case. A separate
test program was used to compute the exponential of the test matrix

ﬁf_ by means of the original MEXP module and its supporting submodules.

The result (Figure 9) was used as a baseline reference for future com-
parison to ensure accurate function computation. However, at this point,
there was still some uncertainty as to the degree of accuracy that was
returned by MEXP.

The next step was to generate the matrix exponential by using
Parlett's algorithm. This required the following procedure:

A. Generate a Schur orthogonal transformation matrix U such that

A= UTU'1 where T is of upper triangular or quasitriangular form.

B. Determine the eigenvalue structure of the matrix T.

C. Apply the correct treatment of Parlett's algorithm to obtain
F = exp(T).

1

D. Calculate eA = UFU”" and print the result for comparison.

These steps will be discussed in turn,

21
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It is recommended (Moler and Van Loan, 1978:823) to use Fortran
modules ORTHES and HQR from EISPACK, 1976 to calculate the transforma-
tion matrix Q. ORTHES is used to transform any general matrix into
upper Hessenburg form, in which the first subdiagonal is the only non-
zero lower diagonal row. This was not required for purposes of HEATEST,
since the tridiagonal form of the A matrix is effectively a subcategory of
the upper Hessenburg form. The HQR module acts on the Hessenburg form
to obtain an orthogonal U matrix by the iterative QR algorithm. The
EISPACK HQR module was modified slightly by the author of this thesis
to eliminate additional accumulations of the eigenvalues of A. This
reduced the required number of input/output parameter arrays‘for HQR,
which in turn reduced the amount of primary computer memory needed to
operate the module. For the test matrix in Figure 3, HQR generated the
transformation matrix U in Figure 10. It is well-known that for a given

orthogonal matrix U, the inverse U'1 is just the transpose UT. The

matrix in Figure 10 was multiplied by its transpose to verify orthogonality.

and, in fact, the identity matrix was the result.

The next step in the exponentiation procedure is dependent on the
eigenvalue structure of the matrix T. The test matrix in Figure 3 was
transformed to the triangular matrix in Figure 11. The main diagonal
elements are the eigenvalues, which are seen to be all non-zero, real,
and distinct. The wide spectrum of the eigenvalues indicates a poor
condition of the matrix for computational purposes.

This is all very fine for the test case, but a vital question
remains as to whether every A matrix generated by HEATEST will exhibit
a similar eigenvalue structure. One basis for conclusion would be to

evaluate all the system matrices that are generated during one reentry

22
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flight. If these matrices all had the same structure, then an argument
could be made to project that result to the general case. However, Hodge,
1982, recommended an analysis of the generating equations in the hope of
mathematically proving a general result. The following paragraph presents
an analysis which establishes this result, except for the confluence of
eigenvalues.

HEATEST generates the A matrix according to the system of equations
in Figure 12 (Hodge, Phillips, and Audley, 1981:4) which describe the
energy balance of the heat propagation in the Shuttle Thermal Protective
System (TPS). The first equation is of fourth order and describes the
interactive heat transfer at the surface of the TPS. This equation is
responsible for the non-symmetric character of the system matrices. A
cursory analysis of the energy balance equations will reveal that every
A matrix generated by HEATEST will be both tridiagonal and diagona]]y'
dominant. Furthermore, the elements of the main diagonal will all have
the same sign, and the elements of the two off-diagonal rows will all
have the same opposite sign. Diagonal dominance ensures that none of
the eigenvalues will be equal to zero. Another theorem was found
(Marcus and Minc, 1964:166) which proves that all Jacobi (tridiagonal)
matrices with the above characteristics have a spectrum of eigenvalues
which are both real and simple (no multiple values).

The above analysis is very useful, but a nebulous question
remained as to whether any of the distinct eigenvalues would be so
nearly confluent as to induce computational errors in the calculations.
Hodge, 1982, felt that the eigenvalues would be closest to each other
at the beginning of Shuttle reentry when heat transfer is slight and

the surface temperatures are closest to the reference values during
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on-orbit conditions. This case was simulated by applying Parlett’s
algorithm to a eimilar, but worst case, test matrix which was obtained
from a thin skin metal plate that generated temperature data in a wind
tunnel. This metal plate had a uniform temperature through its cross-
section, and the system matrix was both singular (non-invertible) and

not diagonally dominant. This situation could not occur within the thermal
shield itself, but it is similar to the thin skin structure of the Shuttle
which is directly underneath the TPS.

The Schur transformation of this worst case matrix produced a
triangular T matrix which had one eigenvalue equal to zero, but which
also exhibited a spread of the eigenvalues across the spectrum. Basead
on this demonstrated lack of confluence, a decision was made to proceed
by using the simplest case (case A) of Parlett's algorithm, which can
be applied even to singular hatrices as long as the eigenvalues are
distinct.

The module FUNCT was developed by this author from subroutine
FUNUPPD (Parlett, 1974:16). A problem was experienced with underflow
when initially computing the exponential of the diagonal elements of the
T matrix. This problem was solved by means of an IF statement that
returns an exponential value of 0.0 whenever the input diagonal entry
has a negative magnitude larger than (-43). This guarantees 14 decimal
places of accuracy, which is over the limit of single precision on
the CYBER computer,

A module MEXP2 was then developed by this author which used
module HQR to generate the Schur transformation matrix, and then it
used FUNCT to calculate F = exp(T) by Parlett’'s algorithm. When used
on the test matrix in Figure 3, the matrix result of MEXP2 agreed

24
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exactly with Figure 9, from MEXP, to the five decimal places that were

displayed.

RESULTS

Modﬁ]e MEXP2 was incorporated into the HEATEST program with some
software difficulties that will be discussed in a later section. HEATEST
was executed over a range of matrix dimensions, using both MEXP and MEXP2
for comparison as to both accuracy and execution time. Each iteration
of HEATEST produced 110 executions of the exponential matrix function.
These execution times were averaged and the results are presented in
Table 1 and Figure 13. While returning comparable accuracy, MEXP2 showed
that the Schur decomposition method was dramatically faster than the

series method of module MEXP.

25
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Iv. COMPUTATION OF THE RICCATI INTEGRAL (DEVELOPMENT OF INTEG2)

THEORY
The performance of module MEXP2 demonstrated that the scaling
and squaring series method was a relatively inefficient technique for
computing the matrix exponential. The module INTEG used a similar series
method for computing the Riccati integral, so it seemed worthwhile to
investigate other techniques for computing this operation, also. Moler
and Van Loan reference a paper (Levis, 1969) which analyzes the compu-
tation of this integral by the method of Simpson's rule.
Simpson's rule is an attractive numerical method when the speed
of computation is important, because the rule exhibits an unusual combin-
ation of both simplicity and a high degree of accuracy. Simpson's rule
approximates an integral by sections of a parabolic curve, rather than
by the cruder rectangle methods. Yet, the simplest formulation of the
rule consists of a sum of only three approximation terms. The accuracy
of the rule is also very good. The computation error is a function of
h5. where h is the interval between approximation points. To obtain a
higher degree of approximation, it would be necessary to use a more
cumbersome Newton-Cotes formula with at least 5 approximation terms
(Young and Gregory, 1972:369).

Simpson's rule approximates the Riccati integral

t
n '
V= [ e'Ath'A tat  where A' = A transpose (14)
t

n-]. At tn - tn_l
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with the formula

V= L IF(0)F'(0) + 4F(R)GF! () + F(2n)aF" (20)] (15)
where h = at/2, F(t) = e"At
so0 we have

VoD e Ogerh 0y g gt e-A(2h) o -A" (2h) (16)
or

/- E’t? (101 + aeRt/20e"A /2 | o-Ato -At' )
where I = the identity matrix
Finally,

v = % [Q + 4e"At/20e=At/2 | o-Ato -A'ty (18)

Calculation of the approximation formula for the Riccati integral
will require four matrix multiplications and four exponential calculations.
In what ways can this situation be improved? The number of exponential
computations can be cut in half by using the well-known expression
e'A't = (e'At)'. This equality is a consequence of the Taylor seriés
expansion of the matrix exponential.

The necessary calculations can be further simplfied, however,
by considering both terms in the Riccati equation (1). Even requiring
only two exponential computations, the Simpson's rule method of computing
the Riccati integral is only comparable in effort to the original Taylor
series method which summed the first 12 terms in the series expansion.
Consideration of the entire Riccati equation reveals that a total of

-At/2  -At

three different exponential terms must be evaluated: e e 7,

At

and e The use of a mathematical formula which relates these terms
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could lead to increased efficiency in the computation of Simpson's rule
and of the entire Riccati equation.

Consider the scalar exponential relation eS+t = eset. voes this
relation also hold true for the matrix exponential? In fact, it does.

A proof was found (Bellman, 1970:170) which is displayed in Figure 14,

It is then possible to calculate the entire Riccati equation by making

only one direct exponential evaluation, that of the term e'At/z. Using
the matrix splitting formula eStt = oSet yields the relation
e-At = (e'At/Z)(e-At/Z) = (e-At/Z)Z’ (19)
At At

then e can be obtained by computing the direct matrix inverse e = = (e'At)'l.
This strategy combines the qualities of easy implementation and efficient

execution.

IMPLEMENTATION

The implementation strategy for incorporating INTEG2 into the
HEATEST program was quite different from the case of MEXP2. MEXP2 repre-
sented a complicated arithmetic process which was performed on one piece
of input data, i.e., the A matrix. A small test program was used to
prove the calculation method for a particular sample input matrix, and
the results could be readily verified.

INTEG2 represented a different situation. The calculation of
Simpson's rule was relatively simple, but it was technically difficult
to cross-check the result. The complicated structure of HEATEST made
it difficult to extract matching A and Q matrices for a sample input.
Therefore, the following implementation strategy was used: write a
program module for INTEG2, substitute the module into HEATEST, and compare

the resulting parameter estimations and error covariance to those of

28

[P P TIPS PR W VO Soip S G G L. PN P Y G G S Y 1 OIS P . - SR S S e




the previous Taylor series method.
The programming exercise actually consisted of writing two main

modules: INTEG2 and TPSOSP3. Originally, TPSOSP2 constructed the entire

Riccati equation by consecutively executing MEXP and INTEG to compute

the first and second terms of Equation (1), respectively. The revised

structure has the form of embedded shells, MEXP2 is called by INTEGZ to

, calculate the matrix exponential e'At/z. INTEG2 uses this value to
ﬁii compute_Simpson's rule in evaluating the integral function, INTEG2
i;i is called in turn by TPSOSP3 to obtain the integral value and, also,
;i? © the value of e'At. TPSOSP3 then uses a matrix inverse module to obtain
eAt, generates the first term of Equation (1) from eAt,generates the

second term of Equation (1) from the integral value, and adds the terms
to obtain the final result.

Development of the modules INTEG2 and TPSOSP3 was divided into
two stages. The first and most important stage was the development of
software manipulation tools, such as a matrix inversion module. The
second stage was the combination of these manipulation tools to construct
the actual computation formula.

MEXP2 satisfied the first software tool requirement, which was

to compute the matrix exponential function. The second tool requirement
was for a module to perform the matrix inverse computation, which is

a fairly simple process in theoretical terms. However, it is much more

TIPS A S A E R s s )
D RO S ." ’,

of a challenge to program this function in an efficient manner which

) does not magnify floating-point round-off errors. In this case, the

: Linpack User's Guide, 1979 provided efficient and reliable code for
Ei the matrix inverse function. The negative aspect of this tool was

that 300 lines of code were added to HEATEST in order to perform a
29
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single operation. Evidently, such is the price of performance.

The Linpack Code was given a dry run by feeding it the orthogonal
transformation matrix U which is displayed in Figure 10. In accordance
with theory, the resulting inverse matrix was exactly equal to the
transpose of U, This test generated a high level of confidence in the
effectiveness of Linpack module SGEFA and Eispack module HQR, and also
in the ability of the programmer to successfully implement these codes.

The third software tool requirement was for a module to perform
the triple matrix multiplication EQET, where Q is presumed to be a
symmetric matrix. HEATEST already contained a module named MAT4 which
seemed to perform exactly this operation, so an attempt was made to
interface with MAT4. MAT4 was also very attractive because it apparently
worked with an exceptionally small number of intermediate storage arrays.
Unfortunately, the construction of MAT4 was nearly impossible to decipher,
because it used one-dimensional arrays to represent two-dimensional
matrices in a rather confusing manner.

An attempt was made to validate MAT4 by incorporating it into the
MEXP2 test program. As mentioned in a previous section, MEXP2 calculated
the Schur transformation UTUT. MEXP2 was reprogrammed several different
ways over a period of two weeks, without achieving any <uccess with the
use of MAT4, Finally, it became necessary to trace tediously by hand
the operation of MAT4 on some sample matrices of order 4-by-4. The
results were illuminating. .

MAT4 used minimal storage space because it only calculated the
upper triangular half of the resultant matrix. When returning the
final values, MAT4 simply assumed that the resulting matrix was symmetric.

MAT4 had been ambiguously documented in a way that could be taken to
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mean that the central input matrix, rather than the output matrix, was
presumed to be symmetric. Therefore, it was determined that MAT4 was
useless for purposes of INTEG2, and a new module named TRI was written
to satisfy this final software tool requirement, TRI was then incorporated
into the MEXP2 test program as a cross-check, with perfect results.

At this point, all the necessary software tools were available
and proven. The modules INTEG2 and TPSOSP3 were then written to con-
struct the Riccati equation from the software tools, and these modules
were then substituted into the HEATEST program. This second stage was

performed with a certain amount of trepidation about the computation

results that would be produced. The software tools had all been meticulously

proven, but the final evaluation depended on combining a large number
of theoretical manipulations into a couple of program module quantum
jumps. It seemed unlikely that so much theory could be included in the
module TPSOSP3 without an inevitable flaw, and it seemed unlikely that
such a flaw could be easily isolated.

When these modules were eventually incorporated into HEATEST,
it so happened that one dummy parameter was inadvertently omitted from
a subroutine call. This single mistake caused several discouraging
interface complications. It was necessary to expend considerable
effort to merely discover the existence of a logical error. Finally,
a simple debugging trace was used to locate the problem module and to

correct the missing input parameter.

RESULTS
INTEG2 was successfully incorporated into the HEATEST program,

and execution times were measured for INTEG versus INTEGZ over a range

31

PULEP UL ¢ P S S S S _— e . Am A o o




YT TS

of matrix dimensions. The results, displayed in Table 2 and Figure 15,
were as follows:

A. The time curves in Figure 15 show a significant improvement
in execution speed when using Simpson's rule. It should be mentioned
that the curve for INTEGZ represents only the time difference between
TPSOSP2 and TPSOSP3 that resulted from the use of Simpson's rule, and
does not reflect the simultaneous benefit of the improved calculation of
the matrix exponential.

B. The desired aerothermodynamic parameters appear to converge
to the same values whether using INTEG or INTEG2. However, the use of
INTEGZ seems to require a couple of extra iterations of HEATEST to obtain
the same amount of convergence as before. This is consistent with a
simultaneous change from 2.45 to 3.28 in the accumulated covariance of
error between predicted and measured temperature that also occurred.
Some of this difference can be attributed to a magnification of roundoff
error that occurred during the inversion of the matrix exponential e'At,
which probably destroyed about four decimal places of accuracy. The
rest of the error must be taken to reflect the inherent limitations of
Simpson's rule. However, the HEATEST program runs dramatically faster

with module INTEGZ, even when extra iterations are taken into account.
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V. ANALYSIS AND CONCLUSIONS

NORMS, CONDITION NUMBER AND ACCURACY

The scaling and squaring series method, used in both modules
MEXP and INTEG, is formulated on the concept of a matrix norm. A matrix
norm can be defined in several different ways for theoretical purposes,
but the general idea-is to provide a comparative measure of the size
of a matrix in terms of the magnitude of its eigenvalues. In section
two of this paper, it was noted that the norm of matrix A must have a
value less than 1 in order to prevent the growth of intermediate series
elements. 'The scaling and squaring method divides A by a factor 2k
such that"ﬂVZkgl, The module MEXP computes the matrix exponential
eAt/zk,'and the result is squared k times. Since the largest eigenvalue

in a sample matrix A was found to be on the order of 28,000, it was

expected that the scaling factor k would probably be tremendous because

“the norm would be very large. However, it was found that the module

TPSOSP2 represents time in hour units, even though the actual temperature

samples were taken every second in real time. Therefore, the value of

t is always less than 1/3600, so the scaling effect on ™ was much

less than expected. The module XNORM was used by MEXP and INTEG to
estimate the matrix norm. The value of XNORM was examined during
executions of HEATEST over a range of matrix dimensions, and the estimated
norm was always in the range 75,000-77,000 with a scaling factor of

k = 5. The norm was about half this large on all succeeding iterations

of HEATEST.
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Every matrix can be assigned a condition number which indicates

the amplification of roundoff error that can occur when solving a

linear system, such as when calculating the matrix inverse. A large

condition number indicates that the linear system is very close to
being linearly dependent, so the matrix is nearly singular. A similar
problem can arise in the solution of matrix differential equations

/e is very large, in which case the

where the eigenvalue ratio le minl

max
matrix is said to be "stiff".

The A matrices of HEATEST exhibit some stiffness because the
nodes of the temperature grid are necessarily closer together near the
top and bottom surfaces of the Shuttle insulation. This is done in
order to accurately represent the interfaces between the layers of the
insulation, but the result is a matrix with a rather poor condition for
computations. For example, the matrix in Figure 11 can be seen to have
diagonal eigenvalues that range from 0.9 to 28,000. (For a discussion
of condition numbers, refer to Young and Gregory, 1973, Vol. II: 564,
811,943)

The condition number of the HEATEST matrices was determined by

calculating e__ /e for those eigenvalues on the main diagonal of all

max’ “min
triangular matrices in module MEXP2. For matrices of order 13 and 30,
the condition number during the initial time propagation of HEATEST was
found to be in the range 75,000 to 77,000, similar to the value of the
estimated norm. This would indicate an expected loss of 4 to 5 digits
of precision when calculating a matrix inversion, such as the case of

At from e'At.

TPSOSP3 in obtaining e
Matrix transformations also provide an opportunity for the
condition number to cause error. This particularly applies to the
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matrix s'1 which is used in the diagonal transformation A = sps™l. one

advantage of using the Schur triangular transformation A = UTU'1 is that
all orthogonal matrices U have a condition number of 1, so no additional
error is created during matrix multiplication or inversion.

The accuracy of the module HQR (that calculates the matrix U)
is determined by an internal parameter named MACHEP which specifies
the precision goal of the QR algorithm. The value of MACHEP was varied

5 to 10'13 in order to determine the effect on

over the range from 10~
HEATEST. The results showed that the QR algorithm must converge very
quickly, because the total execution time of HEATEST only increased
from 178 seconds to 179 seconds as the precision value of MACHEP was
increased. Therefore, all further use of HQR was done with the value
of MACHEP set to 10'13, which is the single precision limit of the

At were then compared for matrices of

CYBER computer. The values of e
order 8 after computation by MEXP and by MEXPZ. The results of the
two methods showed an agreement of 10 to 13 significant digits. It
is difficult to judge which method is the more precise.

The computation of the Riccati integral

t

n : ' 5)
/ e Ptge-A'tgt (1

tn-1

by Simpson's rule has a theoretical error bound of

5 4
(at) d -At. -A't
E T e (20)
n 180 N¥  dt? S ]

where n/2 = 1 is the number of subintervals in the approximation,
according to Levin, 1969:410. Since time is represented in hour units
and L 1/3600, it would seem that the expected error would be
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close to the limit of computer precision. However, the results of modules
INTEG and INTEG2 were compared for matrices of order 8, and the answers
showed agreement only of 5 to 9 significant digits in the mantissa
(right of the decimal point).

Evidently, the accuracy of module INTEGZ is inferior to that of
INTEG, because the covariance of the a priori temperature propagation
was increased slightly, from 2.45 to 3.28, for matrices of order 13.
This seems to explain the observation that the aerothermodynamic para-
meter values appear to converge somewhat slower per iteration of HEATEST
when using INTEG2. However, the parameters seem to converge to the same
values whether using INTEG or INTEG?2 to obtain the result. It can be

seen in Figure 16 that INTEG2 is much more efficient in execution time.

EXECUTION PERFORMANCE

Analysis of the loop structure of module MEXP shows that the number

of floating point operations required for each execution is
20 + (k - 3)n3 + (3/2)n2 + 79n + 2k + 3

where n is the matrix order
k is the average scaling and squaring factor
According to Parlett, 1974:4, the operation count of module

3 to 1503

MEXP2 is only 10n for the Schur decomposition plus (1/3)n3
to build up the triangular function matrix.
Analysis of the loop structure of module INTEG shows that the

floating point operation count for one execution is
(25 + (5/2)k))n3 + (35/2)n? + 16n + 45 + 2k

where n is the matrix order
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k = 5 is the average scaling and squaring factor

3 + 2n2, which con-

Module INTEGZ has an operation count of only 6n
sists mainly of 5 matrix multiplications and 1 matrix inversion.

The overall effect of these improvements on the HEATEST program
is displayed dramatically in Figure 16. This graph shows that the
large coefficients in the operation count of INTEG have a greater effect

on matrices of small order than the n4 term in the operation count of

module MEXP.

SOFTWARE DESIGN CRITIQUE OF THE HEATEST PROGRAM

The most favorable design feature of the HEATEST program is the
manner in which it is organized into submodules, each of which performs
a well defined function. This feature was conducive to further software
development because of the ease with which alternative methods could be
substituted into the program.

The negative software features of HEATEST consisted of inadequate
documentation, lack of source references for utility modules, and a lack
of top-down logical program structure within the submodules. These
features prompted some classic software development problems during the
course of this project. These situations are listed as follows:

1. During the investigation of modules MEXP and INTEG it could
have been instructive to print out the values of the intermediate series
terms. This would have demonstrated the extent of the growth of inter-
mediate series elements, and it might have shown whether the series
could be truncated after a smaller number of terms were computed.
Unfortunately, this investigation was precluded because the internal

coding of these modules was almost indecipherable. MEXP, INTEG, and
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several other software modules had been procured from a commercial
source, and the only available documentation was limited to a descrip-
tion of inputs, outputs, and the general computational strategy.

This black box program construction was understandable since
HEATEST was originally written as a prototype in a research environment,
where internal documentation was a secondary consideration. However, this
feature proved to be an obstruction to the research effort of this
thesis. The replacement modules MEXP2 and INTEG2 should be a software
engineering improvement to the HEATEST program because these modules
have a simple sequential internal structure, all intermediate steps

have descriptive comments, and source references are listed in each

major submodule.

| 2. Documentation is almost non-existent throughout the body of
k L the HEATEST program code, and some of the few existing comments are

‘ . misleading. As a consequence, this author experienced two weeks of
delay in a fruitless effort to interface INTEG2 with module MAT4,

Fl Now that HEATEST is becoming established as a useful tool, it shou]d.

V be upgraded with descriptive comments at the earliest opportunity.

This will preclude the inevitable problems from insufficient program

clarity.

3. A final example illustrates the inadequate documentation of

RO b i B &
A l

the HEATEST program. After the devé]opment of module MEXP2, it was

5] necessary to analyze the structure of module TPSOSP2 in order to
properly interface them. Although J.K. Hodge is the person most
familiar with the programming details of HEATEST, even he found it

.i : necessary to consult Audiey, 1982 in order to decipher some of the

mathematical functions of module TPSOSP2. At least these particular
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mathematical functions are now well documented in the replacement module

TPSOSP3.

SOFTWARE DEVELOPMENT PROBLEMS

As anticipated, there were twio types of development problems that
hindered the pace of this project. These were:

1. Programming language difficulties

2. Use of the AFIT Cyber computer resource
These problems are discussed in detail below.

It was anticipated that the Fortran 77 standard (Fortran 5)
might prove to be a difficulty, since this user had last prograumed
in Fortran about 12 years prior to the start of this project. As it
turned out, the major language problems were caused by the deficiencies
of Fortran in representing variable size storage arrays. This feature
caused several conflicts when the first attempts were made to interface
the replacement modules into the HEATEST program. In order to overcome
this difficulty, it was necessary to transmit the storage arrays through-
out the entire HEATEST program by means of either COMMON statements or
as dummy subroutiﬁe parameters. The danger of this strategy is that
later changes to a local module can cause global errors to propagate
throughout the entire program.

Another type of 1anguage problem was caused by the practical need
to use HEATEST to process temperature node sets of various dimension.
The HEATEST program is actually composed of several modules that are
stored in special form in a Cyber UPDATE library. At the time of pro-
gram compilation, there are various correction sets that must be used
to provide COMMON statements that define the appropriate dimensions of
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the various storage arrays. This is a very flexible arrangement for
the dedicated user who must process assorted data sets. However, the
complexity of the correction sets and the unfamiliar UPDATE control
Tanguage were impediments to this user during the software development
process.

The characteristics of the AFIT Cyber computer environment caused
continual frustration and difficulty throughout the entire course of
this project. It will suffice merely to list the fo]]owingvproblems
that resulted from the administration of Cyber accounts and the idio-
syncracies of the Cyber computer operating system:

1. Accidental revocation of the computer password for this
project.

2. Periodic erasure of several working files, and the mysterious

purging of one complete UPDATE library.

3. Non-availability of computer terminals, even Tate'at night
and on weekends.
! 4. Program turnaround times of 24 to 48 hours.
t;; | 5. Occasional shutdowns of the Cyber computer system for several
days, due to maintenance problems and system reorganization.
& 6. Unfriendly characteristics of the Cyber interactive operating

system and its primitive line-oriented editor utility.

FURTHER AREAS FOR INVESTIGATION

L

Due to time limitations, there are several aspects of this
project that could not be sufficiently examine. These topics are

described here in detail.

RO Rt A2 4

Y S

1. Examination of the intermediate terms in the scaling and
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squaring Taylor series. These terms could be checked to discover the
existence of any intermediate element growth. It is also possible

that the series could be further truncated, especially module MEXP

which sums (25 + n) terms where n is the order of the matrix A. This
could not be examined because modules MEXP and INTEG were indecipherable
and would probably need to be reconstructed.

2. Moler and Van Loan, 1978:828 state that the scaling and
squaring method can be implemented with the order of n3 floéting point
operations. Loop analysis of module MEXP showed 0(n4) operations, so
this could be an inefficient implementation. An attempt could be made
to rewite MEXP with 0(n3) operations, and to examine the efficiency of
this implementation in comparison to MEXP2, which used the Schur decompo-
sition.

3. Use the algorithm that was developed in Section 3 of this paper
for matrix multiplication of triangular matrices. This algorithm could be
used in place of Parlett's method to make a series computation of the
matrix function, after performing the initial Schur triangular decompo-
sition. This method would probably be inferior to Parlett's method,
however.

4, Investigate the efficiency of the diagonal transformation

A =sps !,

This matrix decomposition is now feasible because analysis
of the nature of the A matrix, from section 3 of this paper, proved that
a distinct set of eigenvalues will always exist. The speed of this
method would depend on the efficiency of the algorithm which constructs
the transformation matrix S. This method would probably be inferior

to the Schur decomposition in accuracy, however, due to the condition

number of the A matrices, There would be a probable loss of 4 to 5
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significant digits when performing matrix inversion to obtain the |

transformation matrix S'l. A further loss of accuracy would occur when

At

the matrix e is inverted in module TPSOSP3 to obtain the value of

eAt

for calculating the first term of the Riccati equation.

5. Further analytical and computational effort could be made to

investigate the accuracy of the results of Simpson's rule from module

- INTEG2. It is not exactly clear what effect this accuracy has on the

*‘ covariance of temperature propagation in the HEATEST program. The

i covariance appears to be somewhat greater, but the extent of the increase
is not well known. The effect of this covariance increase on the con-

vergence of the aerothermodynamic parameter values is also in question.

-~ Tj DDt inrele.

CONCLUSIONS
Matrix decomposition methods can be much more efficient than the
i‘ U' familiar Taylor series for computing the matrix exponential function,
E especially as the order of the matrices is increased. Many methods

exist for computing the matrix exponential, but only a few are competitive

in both speed and accuracy. The scaling and squaring series method is

both simple and accurate, but the Schur decomposition with Parlett's method
for evaluating matrix functions seems to have comparable accuracy and
much greater computational efficiency.

The scaling and squaring series method can also accurately compute

t |
the Riccati integral .l.'] e'Ath'A tdt but computational efficiency

t

& n-1

lf of this method is greatly degraded when the A matrix has a large compu-
2

i; tational condition number. In this situation, a numerical integration
]

F o method such as Simpson's rule can provide a dramatic increase in the
SR
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speed of execution at the cost of some loss of'accuracy.
The matrix Riccati equation can be reliably computed for the
HEATEST program with a considerable reduction in execution time by
means of the alternative numerical methods discussed above. The covariance

of temperature propagation is somewhat increased, but the slower iterative

convergence that results is clearly outweighed by the increased efficiency
of overall program execution.

T‘ The results of this thesis have been of immediate benefit to the

[ | U.S. Air Force. Within one week after these improved methods were per-
fected, the program code was transmitted to the Air Force Flight Test

Center at Edwards AFB. The improved computational efficiency of the

."'{

HEATEST program will not only save on budget money for computer time,

but it also will allow the use of larger matrices that can model deeper

p 'l' heat penetration into the Shuttle thermal shield. This will result in
f a better definition of the envelope of reentry trajectories for the

E. Orbiter vehicle and, therefore, an increase in its effective mission
h capability.

;' _ The improved HEATEST program is already in extensive use by the

AFIT Aerodynamics Department, where program turnaround times have been

;‘ . reduced from one week to less than 24 hours. As a result, new research
E" is being done about possible coupling effects of the aerothermodynamic
EE parameters. The HEATEST program also has a potential for application
‘i to the reduction of wind tunnel data by the Air Force Flight Dynamics
E? Laboratory, now that its execution cost has been substantially reduced.
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Figure 2. "The Hump"

Reference: Mcler and Van Loan, 1978:804
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A.B + A4B + A7B

3

AB. + A.B, + A.B
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M By
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277 578 879

-
B Bg | =
Bg By

_

A)By + AyBg + AsBg

AB, + AB, + A.B

5237 + fﬁFS + Ang

_

by Elements

Lower Triangular Elements are Underlined.

AgBy + AgBy + AgBy Ay + AgBg * AgBg
AgBy + AgBp * AgBy  RgBy + AgBg + AgBg
Figure 6. Matrix Multiplication
—
AlB1 AIB4 + A4B5 AlB7 + AsB
0 . ASB.5 ASBB + ABB
._P 0 Ang
Figure 7.

g * AsBg

9

Remaining Terms When Lower Triangular

Elements are all Zero
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S1 Sn
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0 X X X X X X X X X
0 0 X X X X X X X X
0 0 0 X X X X X X X
0 0 0 X X X X X X X
0 0 0 0 0 X X X X X
0 0 0 0 0 0 X X X X
0 0 0 0 0 0 X X X X
0 0 0 0 0 0 0 0 X X
0 0 0 0 0 0 0 0 0 X
- —

Figure 8. Shows a Quasi-Triangular Matrix, and the Resulting

Blocks of Various Sizes That Must be Multiplied
for Parlett's Algorithm
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(8)

(c)

(D)

(E)

(F)

CADAAXA/ZU1 = - KA/AXAU1 + KA/AXAU2

- oe (U] - U2) + £(a,8,5.RE)q,

(CADAAXA/Z + cBoBAXZ/Z)U2 = KA/AxAU1

- (KA/AXA + KB/AXZ)UZ + KB/Ax2U3

Cprg(aX;_y + 8X;)/ 205 = Kg/aX; oy Us

(CgPpdX| _3/2 + CPeaXe/2)U) 5, = Kg/BX 3

(CPedXc/2 + CoppaXp/2)Uy 1 = Ke/aXcUy o

- (Ke/BXg + Kp/aXp)U _p + Kp/aXpU)

Figure 12, System Equations Which Generate Matrix "A"
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Table 1

Comparison Data for Modules MEXP and MEXP2

Matrix Size

10
11
12
13
14
15
16
17
20
25
30

x 10
x 11
x 12
x 13
x 14
x 15
x 16
x 17
x 20
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Execution Time (Seconds)

MEXP

.014
071
110
.163
232
.327
435
.595
778
1.016
1.267

MEXP2

.012
.037

—_—

.064

119

.198

.396

718
1.142
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Proof:
U;ihg the series expansions for the three exponentials and the
fact that absolutely convergent series may be rearranged in arbitrary

fashion, we have

= k k > m,m
eAseAt=[Z A"s ][Z A"t ]
k! m=0

m!

[}
e
b
=] -
—
"
-
‘-f
3
—_————

- Alstt)

Ref: Bellman, 1970: p. 170

Figure 14, Proof of Matrix Exponential Theorem
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10
13
15
20
25

30

INTEG INTEG2
x 8 170 .020
x 10 .314 .033
x 13 .649 .062
x 15 .981 .088'
x 20 2.233 .175
x 25 4.251 .311
x 30 7.272 .509
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Comparison Data for Modules INTEG and INTEG2

Matrix Size

..........

Table II

Execution Time (Seconds)




Time (Seconds)

/ Matrix

INTEG2

5 10

Figure 15. Execution Time of the Riccati Integral
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Table III

Total Execution Time of the Heatest Program Using
Module Substitutions

Execution Time Includes Initial Time Propagatlon
Plus One Pararieter Iteration

Matrix Size Execution Time (Seconds)
MEXP, MEXP2, MEXP2,
INTEG INTEG INTEG2
8 x 8 74.5 68.6 38
10 x 10 116.3 109.2 50
13 x 13 266.8 198.3 76
15 x 15 413.5 290.6 103
20 x 20 — —_ 190
23 x 23 —_— o 252
24 x 24 —_— —_— 287
26 x 26 — _— 352
¥
1
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Figure 16. Total Execution Time of HEATEST Program
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SURROUTINE TPSOSP2 (DT)

DIMENSION PHI(8,8),PC(8,8),0D(8,8),0DT(R,8)
DIMENSION QUE(8,8),A(8,8)
COMMON/MAIN/NPTPC,NPTSS,PHI,PC,QD,QDT, QUE, A
IF(DT .L%. N0.0) GO TO 999

DELT=DT/360N.

COMPUTE LINFARIZED STATE TRANSITION MATRIX, PHI(K,K+1)

NPTSS=NPTPC
CALL HEXP(NPTSS,A(I,1),DELT.PHI(1,1)

COMPUTE MODEL NOISE COVARTANCE, QD(K+1)

CALL EQUATE(NPTSS,KPTSS,qQD(1,1),QUE(1,1)

CALL MSCALE(NPTSS,NPTSS,A(l,1),-1.0,A(1,1)

CALL INTEG(NPTSS,A(1,1),qD(1,1),QDT(1l,l),DFLT)
CALL MAT4(NPTSS,NPTSS,QDT(1,1),PHI(1,1),0D(1,1))
CALL MSCALF(NPTSS,NPTSS,A(1,1),-1.0,A(1,1))

COMPUTE ONE~STEP PREDICTED APRIORI COVARTIANCE, PC(K+1l)

CALL MAT4(NPTSS,NPTSS,PC(1,1),PHI(1,1),QDT(1,1))
DO 520 1PC=1,NPTSS '
DO 520 JPC=1,NPTSS
520 PC(IPC,JPC) = QNT(IPC,IPC)4+QD(IPC,IPC)
NPTSS=INF
999 RETURN
END
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L‘ SURROUTIN® MEXP(N,A,T,FA)}

+ DIMENSION A(l),EA(1),C(30),n(31),E(30)
: - COMMON/MAIN1/NDIM,X(1)

e NDIM=NDIM+1

NN=NDIM*N

FA(1)=EXP(T*A(1))
RETURN

5 W=1.0
DO 10 T=1,NN,MDIM
IL=I+NM1
DO 10 J=I,IL

10 EACJ)=A(J)
C1=XNORM(N,A)
IND=0
L=l

| NM1=N-~1

hl IF(N .GT. 1) GO TO 5
[

p

. Tl=T
‘! 15 TF(ABS(T1*Cl).LE. 3.0) GO TO 20
",_‘. T1=T1/2.
- IND=IND+1
- GO TO 15
20 C2=0.
DO 25 I=1,NN,NDIM1
25 C2=C2-~EA(TI)
C2=C2/FLOAT(L)
C(L)Y=C2
D(L+1)=0.
I1=N+1-L
E(I1)=W
II=1
DO 35 T=1,NN,NDIM
IL=I4+NM1
DO 30 J=I,1IL
30 X(J)=FA(J)
X(I1)=X(II)+C2
35 II=II+NDIM1
IF(L .EQ. NY GO TO 40
CALL MMUL(X,A,N,N,N,FA)
W=4*TL/FLOAT(L)

L=L+1
GO TO 20
& | 40 CONTINUE
a
i‘-l.
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L
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70

75
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90
100

CAN CHECK X:0 FOR ACCURACY
J=N+25
DO SO L=N,J

DO 45 K=1,6N
D(K)=D(K+1)~-W*C(K))*T1/FLOAT(L)
E(K)=E(K)+D(K)
W=D(1)

IT=1

DO 60 TI=1,NN,NDIM
IL=T+4M1
DO 55 J=1,IL
EA(J)=E(1)*A(J)
EACIT)=EA(LI)+E(2)
II=II+NDIM1

IF(N .EQ. 2) GO TO RS
DO 80 L=3,!
CALL MMUL(EA,A,N,N,N,X)
II=1
C2=E(L)

DO 75 I=1,NN,NDIM
IL=I+NM1

DO 70 J=I,IL
EA(J)=X(J)
EACII)=EA(LII)+C2
IT=TI+NDIM1
CONTINUE

85 IF(IND .FQ. O) RETURN

DO 100 L=1,IND

DO 90 TI=1,NN,NDIM
IL=T+NM1

DO 90 J=I,IL
X(J)=EA(J)

CALL MMUL(X,X,N,N,N,EA)
RETURN

END

A-5

PO L U Y

T YT M T W -




AR

B i

LS Mnte. aan aende

10

15

¢0

25

30

35

SUBROQUTINE INTEG(N,A,C,S,T)
S=INTEGRAL FA*C*EA' FROM O TO T
C IS DESTROYED

DIMENSION A(1),C(1),S(1),COEF(15)
FOMMON/MAINL/NDIM,X(1)
NDIM1=NDIM+1

NN=N*NDIM

NMl=N-1

NT=13

NTM1=NT-1

IND=0

ANORM=XNORM(N,A)

DT=T ,
IF(ANORM*ABRS(DT) .LE. 0.5) GO TO 10
DT=DT/2.

IND=IND+1

GO TO 5

DO 15 TI=1,NN,NDIM

J=T+NM1

DO 15 JJ=1,J

S(JJ)=DT*C(JJ)

Tl=DT**2/2,

DO 25 1IT=3,17

CALL MMUL(A,C,N,N,N,X)

DO 20 I=1,N

II=(1-~1)*NDIM

DO 20 JJ=I,NN,NDIM

1I=11I+1

C(JI)=(X(JI)+X(IL))*T1
$(JJI)=S(JI)+C(IT)
T1=DT/FLOAT(IT)

IFCIND ,EQ. O) GO TO 100
COEF(NT)=1.0

Nno 30 I=1 ,NTM1

II=NT-1I
COEF(TIL)=DT*COEF(TI+1)/FLOAT(I)
DO 40. I=1 NN,NDIM

11=1

J=T+NM1

D0 35 JJ=1,J

X(JJ)=A(JJ)*COEF(1)
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40
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‘55

60

70
15

80
85

87
90

100
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X(IT)=X(II)+COEF(2)
IT=ITI+NDIM]

DO 55 L=3,NT

CALL MMUL(A,X,N,N,N,C)
I1=1

T1=COEF(L)

DO 55 I=1,NN,NDIM
J=T+NM1

DO SO JJ=I,J
X(JJ)=C(JJ)
X(IT)=X(II)+T1

I1=II+NDIM1
X=EXP(A*DT)

L=0

L=L+1 ,
CALL MMUL(X,S,N,N,N,C)
II=1

DO 90 I=1,N

J=11

IF(T .EQ. 1) GO TO 75
DO 70 JJ=I,II,NDINM
S(JJ)=5(J)

J=J+1

DO 85 JJ=1,N

KK=JJ

DO 80 K=1,NN,NDIM
S(J)=S(J)+C(K)*X(KK)
¥K=KK+NDIM

YaJ4+NDIM

PO 87 JJ=I,NN,NDIM -
C(JI)=X(JJ)

IT=II+NDIM

IF(L .EQ. IND) GO TO 100
CALL MMUL(C,C,N,N,N,X)
GO TO 60

CONTINUE

RETURYN

END
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SURROUTINE MMUL(X,Y,N1,N2,N3,Z)
DIMENSION X(1),Y(1),Z(1)
COMMON/MAINYL/NDIM
NEND3=NDIM*N3
NEND2=NDIM*N2
DO 1 I=1,N1
DO 1 J=I,NEND3 ,NDIM
™= 0.
K=1
KK=J-1
5 XKK=KK+1
TM=TM+X (K ) *Y (KK)
K=K+NDIM
IF(K .LE. NEND2) GO TO 5
1 2(J)=TM
RETURN
END

R

i

T ey

s
[ T ]

FUNCTION XNORM(N,A)
C CNOMPUTES AN APPROXIMATION TO NORM OF A. NOT A BOUND.
: DIMENSION A(1l)
St COMMON/MAINL/NDIM
o NDIM1=NDT!{+1
NN=N*NDIM
Cl=0.
TR=A(1)
IF(N .EQ. 1) GO TO 20
1=2 . )
DO 10 TII=NDIM1,NN,NDIM
J=11
DO 5 JJ=I,II,NDIM
Cl=Cl+ABS(A(J)*A(JJ))
S J=J+1
TR=TR+A(J)
10 I=1+1
- TR=TR/FLOAT(N)
"~ DN 15 TI=1,NN,NDIML
[ 15 C1=C1l+(A(IT)~TR)**2
9 20 XNORM=ABS(TR)+SORT(C1)
P- RETURN
{ END

A-8
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SUBROUTINE MAT4(N1,N2,XYZ)
c Z=YXY" X=X" IS N2XN2, Y IS N1XN2, Z IS NIXNI

DIMENSION X(1),Y(1),Z(1)
COMMON/MAINI/NDIM
CALL “MMUL(Y,X,N1,N2,N2,2)
NN2=N2*NDI
DO 3 I=1,Nl
IMl= I-1
IT=IML*NDIM
JI=I+I1
DO 2 J=I,Nl
TEMP= O.
KK=J
DO 1 K=1,MN2,NDIM
TEMP=TEMP+Y(K)*Z(K,K)

1 KK=KK+NDIM ,
Z(JJ)=TEMP

2 JI=JJ4NDIM
JJ=1
K=TT+1
KK=TI+IM1
DO 3 J=K,KK
2(JJ)=2(J)
JI=JJ+NDIN

3 CONTINUE
RETURN
END

!
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*DECK FTPSOSP3

SUBROUTINE TPS0OSP2(DT)
FUNCTION-~ COMPUTES THE MATRIY RICCATI EQUATION
PC=(EXP(A*T*PC*EXP(A'*T)) +
+ EXP(AXT)*INTEGRAL(PHI DT)*FXP(A'*T)
WHERFE, PHI = EXP(A*T)*OUE*EXP(-A'*T)
AND A' = TRANSPOSE OF MATRIX A
[MPUT VALUES:
A: SYSTFEM SOLUTINN MATRIX.
QUE: ODEL ERROR MATRIX.
PC: VALUE OF COVARIANCE PROPAGATFD OVER TLUE.
DT: TIME TNCRFMENT IN UNITS OF S=CONDS.
NPTSS: GLOBAL LEADING DIMENSIOH OF ALL ARRAYS.
NPTPC: TUE ORDER OF SUBMATRICES BEING MANIPULATED,
7D,0DT, PHI: STORAGE ARRAYS. WILL BE DESTROYFD.
OUTPUT VALUES:
PC: VALUE OF A PRIORT COVARIANCE AFYFER PPOPAGATTON.
NPTPC,NPTSS,DT,NUR: INPUT VALUES ARE UNCLANCED.
A,0D,N0DT,Pill: INPUT VALUES ARE DESTROYED.
DIUFLSTION IPVT(8),U0RK(8)
DIMENSION PHI(R,8),PC(8,8),0D(8,R),QNT(8,8)
DIMENSION QUE(S,8),A(8,8)
COMMCN/MALN/NPTPC, NPTSS, PHI, PC,QD, QDT,QUE, A
1IF(DT .LE. 0.) GO TO 999
T=NT/36N0
C TIME T IS Nou IN HOUR UNITS.
CALL INTEG(NPTPC,A,T,QLE,PHI,ND,NDT,YPTSS)
C NOJ QDT = INTEGRAL(PHI DT)
c A = EXP(~A*T)
CALL SGEFA(A(1l,1),HPTSS,NPTPC,IPVT(1))
CALL SGEPI(A(1,1),NPTSS,NPTPC,IPVT(1),WORK(1))
C NOW A = EXP(A*T) AFTER ATRIX INVERSION.
CALL MAT4(NPTPC,NPTPC,QDT(1,1),A(1,1),QD(1,1))
C NOW OD = FEXP(A*T)*INTECRAL(PHI DT)*EXP(A'*T)
CALL MAT4(NPTPC,NPTPC,PC(1,1),A(1,1),MT(1,1))
C  NOU QDT = EXP(A*T)*PC*EXP(A'*T)
DO 20 I=1,NPIPC
nn 20 J=1,NPTPC
20 PC(I,J)= T(I,J)+ an(L,d)
MW PC HOLNDS THE SN OF B0TH TFRNS TN
TUE RICCATIL FNUATION.
999 RETLRN
END

OO0 anNaOan

o0
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*DECK MEXP2
SUBROUTINE MFXP(N,SUB1,TIME,SUB2,0Q,0T,N2)
FUNCTION- COMPUTES MATRIX EXPONENTIAL FXP(SUR1*TIMF)
BY SCHUR METHOD OF TRIANGULAR DECOMPOSITION.
INPI'T VALUES:
SUBLl: MATRIX TO BFE EXPONENTIATED.
TIME: TIME INCREMENT IN AR ITRARY UNITS.
SUB2: STORAGE ARRAY. CONTENTS WILL BE DESTROYED,
Q,AT: STORAGE ARRAYS.CONTENTS WILL BF. DESTROYED.
N2: THE GLOBAL LEADING DIMENSION OF ALL ARRAYS.
M: THE ORDER OF SUBMATRICES TO BE MANIPULATED.
OQUTPUT VALUES:
SUB2: HOLDS THE MAIN RESULT EXP(SUBL*TIME).
SUB1,Q,QT: INPUT CONTENTS HAVF BEEN DESTROYED.
TIME,N,N2: INPUT VALUES ARE UNCHANGED,
DIMENSION SUBL(N2,N2),SUB2(N2,N2)
DIMENSION N(N2,N2),QT(N2,N2)
C MULTIPLY ELEMENTS OF SUB1l RY TIME
DO 102 1I=1,N
DO 102 J=1,N
SUBI(TI,J)=SURBL(T,J)*TINE
102 SUB2(I,J)=SUBL1(1,J)
c GENERATE IDENTITY MATRIX FOR TNPUT Q, FOR HOR
Do 30 1=1,N
DO 30 J=1,N
A(L,J)=0,.
30 IF(I .EQ. J) Q(I,J)=1.
CALL F3P(N,SUB2,Q,N2)
MATRI.. SUB2 HAS BEEN DESTOYFD
N IS NOW AN ORTHOGONAL TRANSFORMATION MATRIX
DO 40 I=1,N :
DO 40 J=1,N
40 QT(1,J3)=0(J, 1)
QT IS NOW THFE TRANSPOSE,AND THE INVERSF, OF 0
CALL MULT(SUBL,N,N,SUR2,N2)
CALL MULT(QT,SUR2,N,SUBL1,N2)
C SUB1 NOW CONTAINS THE TRIANGULAR MATRIX QT*A*(
WHERFE 'A' REPRESENTS THE INPUT VALUE O0OF SUBI1.
DO 50 1=1,N
no 50 J=1,N
50 SUB2(1,J)=0.
c SUR2 IS SET TO A ZFEROD MATRIX FOR INPUT TO MODULE FUNCT.
CALL FUNCT(1,N,SUB1,SUB2,N2)
i C SUB2 NOW HNOLDPS FXP(A*TIME) IN TRIANGULAR FORM
CALL MULT(SUB2,0T,M,SURL,N2)
CALL "MULT(N,SUR1,N,SUR2, M2)
C sSuU82 NO0W HOLDS EXP(A*TIME) IN ORIGINAL BASIS FORM
RETURN
END

DO OOOO0O0O00

a0n
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*DECK INTEG?
SURROUTINE INTEG(N,A,T,QUE,PUL,0D,ODT,N2)
FUNCTINM~ USES SIMPSON'S RULE ON THE RICCATL INTEGRAL.
~ USES THE MATRIX RULE EXP(A(S+T))=EXP(AS)*FEXP(AT).
SOURCF: ALH.LEVIS, COMPUTATIONAL ASPRCTS OF TUE “ATRIX
FXPONENTIAL, IEEE TRANSACTIONS ON AUTOMATIC CONTROL,
AUG 1969:410,411.
INPUT VALUES:
A: SYSTEM MATRIX TO BE EXPONENTIATED.
T: TIME INCREMENT IN ARBITRARY UNITS.
(UE: SYSTEM MONEL ERROR MATRIN.
PUI,QD,QDT: STORAGE ARRAYS. WILL BE DESTROYED.
M2: GLOBAL LEADING DIMENSION OF ALL ARRAYS.
N: DIMENSION OF SUBMATRIGES TO PE MANIPULATED.
OUTPUT VALUES:
N,T,N2: INPUT VALUES ARE UNCHANGED.
A,PHI,QD: INPUT CONTENTS ARE DESTROYED.
ODT: HOLDS THE ‘f{AIN RESULT,
INTEGRAL(FEXP(=AXT ) *UE*FXP(~A"*T)DT)
DDMENSION A(B2,N2),QUE(N2,N2),PUT(N2,%2)
DIMENSTON QOD(N2,N2),QDT(N2,32)
T2= ~T*0.5
CALL MEXP(M,A(1,1),T2,PHI(1,1),QD(1,1),0DT(1,1),N2)
C N PHI = EXP(-A*T/2) -
CALL TRI(N,QUE(1,1),PHI(1,1),QD(1,1),QDT(1,1),%2)
C MW ODT = EXP(-A*T/2)*QUEXFEXP(—~A'*T/2)
CALL MSCALE(N,N,QDT(1,1),4.0,0QDT(1,1))
C NOW QDT = 4*EXP(-A*T/2)*QUE*EXP(~A'*T/2)
CALL MULT(PNI(1,1),PHI(1,1),N,A(1,1),N2)
NOW A = EXP(~A*T)
CALL TRI(N,QUE(1,1),A(1,1),QD(1,1),PHI(L,1),N2)
C  NOW PHI = EXP(-A*T)*QUE*FEXP(-A'*T)
DO 10 I=1,H
DO 10 J=i,n
10 QDT(I,J)= OUE(L,J)+ QDT(I,J)+ PHI(I,J)
ODT SIMMED THE TIREE TERMS OF STMPSON'S RULE.
16=T/6.0
CALL “SCALE(N,N,09T(1,1),T6,QDT(1,1))
C NOW QDT = QDT*T/6. SIMPSON'S RULE IS COMPLETE.
RETURN
END
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.*DF.CK MULT2
SUBROUTINE MULT2(N,X,Y,Z,N2)
FUNCTION~ PERFORMS MATRIX MULTIPLICATION Z=X*Y',
UWHERE Y' REPRESENTS TI!IFE TRANSPOSE OF MATRIX Y.
INPUT VALUES:
¥,Y: ARRAYS THAT HOLD MATRICES TO BE MULTIPLIED,
(A STORAGF ARRAY. CONTENTS WILL BE DESTROYED.
N2: THE GLOBAL LEADIMG DIMENSION OF ARRAYS X,Y,Z
N: THE ORDER OF THF SUBMATRICES TO BE MULTIPLIED.
DIMENSION X(N2,N2),Y(N2,N2),Z(N2,N2)
DO 20 1I=1,N
DO 20 J=1,N
2(1,J)= 0.
DO 20 K=1,N
20 Z(1,J)= Z(I,J)+X(L,K)*Y(J,K)
RETURN
END
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: *DECK TRI
- SURBROUTINE TRI(N,Q,X,W,Z,N2)
, FUNCTION- PERFORMS THE MATRIX MULTIPLICATION 7Z=X*Q*X',
WHERFE X' REPRFESENTS THF TRANSPOSE OF MATRIX X.
INPUT VALUES:
X,Q: ARRAYS THAT HOLD MATRICES TO BE MULTIPLIED.
W,Z: STORAGE ARRAYS. CONTENTS WILL BE DESTROYED.
N2: THF GLOBAL LEADING DIMENSION OF ARRAYS 0,X,%W,2
N: THE DIMENSION OF SUBMATRICES TO BE MULTIPLIFED.
OUTPUT VALUES:
X,Q,N2,N: INPUT VALUES ARF UNCHANGED.
Z: HOLNDS THE “MAIN RFESULT X*0*X',
W INPUT VALUFES ARE DESTROYED.
DIMENSION Q(N2,N2),X(N2,N2),W(N2,N2),Z(N2,N2)
CALL MULT.X,N,N,W,N2)
X*Q) IS STORED IN W
CALL MULT2(N,W,X,2,N2)
o c ZsWAX "
- RETURN
o FEND
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*DECK MULT
SUBROUTINF MULT(X,Y,N,Z,N2)
FUNCTION~ PERFORMS MATRIX MULTIPLICATION Z=X*Y
INPUT VALUES:
X,Y: ARRAYS THAT HOLD MATRICES TO BE MULTIPLIED
7Z:  STORAGE ARRAY. CONTENTS WILL BE DESTROYED.
N2: GLOBAL LEADING DIMENSION OF ARRAYS X,Y,Z.
N: THE ORDER OF THE SUBMATRICES TO BF MULTIPLIED.
OUTPUT VALUES:
Z:  HOLDS THE MATRIX PRODUCT X*Y.
X,Y,N,N2: INPUT VALUES ARE UNCHANGED.
DIMENSION X(N2,N2),Y(N2,N2),Z(N2,N2)
DO 20 1=1,Y
DO 20 J=1,N
Z(1,J)=0,
DO 20 K=1,%
20 Z(I,J)=Z(1,J)+X(I,K)*Y(K,J)
- RETURN

QOO ONHONn

END
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*DECK FUNCT
SUBROUTINE FUNCT(R,S,T, F, 1)
FUNCTION~THIS MODULE COMPUTES THE EXPONENT OF AN
UPPER TRIANGULAR MATRIX WITH DISTINCT EIGENVALUES.
THE EXPONENTIAL OF THE DIAGONAL ELEMFENTS IS COMPUTED
DIRECTLY.SUPERDTAGONAL ELEMENTS ARF OBTAINED FROM TIE
LOWER DIAGONALS BY A RECURRENCE RELATION,
A MARNING IS PRINTED IF MULTIPLE EIGENVALURS FXIST.
SOURCE: COMPUTATION OF FUNCTIONS OF TRIANGULAR MATRICES
BY B.N. PARLETT, MEMO #ERL-M481, UNIVERSITY OF CALIF.
AT RFREFLEY. NOV 1974, (AD-A 005 916)
INPUT VALUES:
R: THE INDEX OF TIE FIRST RON IN THE TRTANGULAR RLOCK.
S: THE INDEX OF TUE LAST RO IN THE TRIANGULAR BLOCK.
T: THE ARRAY UHICH CONTAINS THE TRIANGULAR MATRIX.
F: THIS ARRAY CONTAINS A ZERO MATRIX.
Mtf: TUE GLORAL LEADING DIMFNSION OF ARRAYS T AND F.
OUTPUT VALLFS:
R,S,T,!M: INPUT VALUES ARE UNCHANGED.
"F: CONTAINS THE RFSULT, TUE EXPOLANTIAL OF MATRIX T.
DIMENSION T(IPL,i0M), FOI, M)
INTEGER R, S :
REAL EXP
DO 10 I=R,S
C THE IF-BLOCK GIVES 14-DIGIT ACCURACY ' ITHOUT UNDERFLON
IF( T(I,I) .LT. -43.) THEN
F(I,1)=0.
FLSE
F(I,1)=EXP( T(I,I) )
END IF
10 CONTINUE
C PROCESS THE KTH SUPERDIAGQONAL
NeS-R+1
NN=N-1
C NN = NCMBER OF SUPERDIAGOUALS IN THE BLOGK
IF(EN .EQ. 0) RETURN
DO 13 ¥=1,NN

Ao oOoNa0On0

LL=S~K
no 12 I=R,LL
c CHECK FOR MULTIPLE RIGEKVALUES.

DIFF=T(I,)~T(I+K, I4K)
IF(ABS(DIFF) .EQ. 0.0) GO TN 14
G=T(L, FKI*(F(T, 1)~F(T+K, T+K))
KK =K~1
IF(EX .EQ. D) GO T0 12
DY 11 =1, KK
11 G=GH+(F(T, TR *T (T8, TH)=T( T, [+E~1) ¥*F(T+K-1, [+K))
12 F(IL, [+K)=G/DIFF
13 CONTIMLE
RETIMN
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14 PRINT * ERROR IN {0ODULE FUNCT.'

PRINT *,'TRIANGULAR “ATRIX HAS ‘ULTIPLE EIGENVALUES.'
RETURN
END

*DECK HR

o000 On000000

AO0O0

o]

SUBROUTIHE QR (IGH,H,Z,N2)

FUNCTION~ CALCULATES TilE ORTHOGONAL SCHUR TRANSFORMATION
MATRIX FOR TI'E UPPFR NESSENBFRG ‘{ATRIX WHICH IS INPUT.
USES THFE QR ITFRATIVE MET!MOD.

PRINTS A WARNING IF THE EIGENVALUES DO NOT CONVERGE.

SOURCE: THE EISPACK GUIDE.

INPUT VALUES:

ICH: DIMENSION OF THE REQUIRED TRANSFORMATION MATRIX.
H: .THE UPPER HESSENBERG MATRIX TO BE TRANSFORMED.
Z: MUST BE AN IDENTITY MATRIX.

N2: THE GLOBAL LEADING DIMENSIO!N OF ARRAYS H AND Z.

OUTPUT VALU®S:

IGH,%2: INPUT VALUES ARE UMNCIHANGED.

H: INPUT VALUES ARE DESTROYED,
Z: CONTAINS THE ORTHOGNONAL SCHUR TRANSFORM MATRIX.
INTEGER I,J,K,L,M,N,EM, IT,JJ,LL,I0M,NA, N, NN, N2,

X 1GH, LTS, LOW ,11P2 ,EXM2, IFRR , MT}O0

REAL H(MN2,N2),7(t2,N2)

REAL P,0,R,S,T,W,X,Y,RA,SA, VI, VR, ZZ  tIORY
REAL MACHEP,SORT, ARS, SIGH,RFAL,ATIAG
LOGICAL NOTLAS '

COMPLEX 73, CMPLX

MACHEP 1S A PARAMETFR THAT SPECIFIES PRECISION
YACHEP=0.0000000000001
MWM=1CH
N=IGH
Low= 1
IFRR= 0
HoRM= 0.
K= 1
COMPUTFE. “tATRIX NORM
DO SN T = 1,4
DO 40 J = KM
40 NORM = NORM + ABS(H(I,J))
K =1
50 CONTINUR
rN = LGH
T = 0.0
*%& SEARCI FOR CIEXT EEGEIVALUSS**#
60 TF(EN .LT. LOY) GO TO 1001

8-9
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70

80

100

120

130

ITS = 0
MA = EN -~ 1
EMM2 = NA - 1
**x*[,00K FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
FOR L=EN STEP -1 UNTIL LOW DO #*x%
DO 80 LL = LOW, EN
L = EN+ LOW - LL
IF(L .EQ. LOJ) GO TO 1NQ
S = ABS(I(L-1,L~1)) + ABS(il(L,L))
IF(S .EQ. 0.0) S = NORM
IF(ABS(II(L,L~1)) .LE. MACHEP * S) GO TO 100
CONTINUE _
k% FORM SHIFT #*%*
X = H(EN,EN)
IF(L .EQ. EN) GO TO 270
Y = H(NA,NA)
W = H(EN,NA) * H(MNA,EN)
IF(L .EQ. MA) GO TO 280
IF(ITS .EQ. 30) GO TO 1000
IF(ITS .NE. 10 .AND. ITS .NE. 20) GO TO 130
*%% FORM EXCEPTIONAL SHIFT *%*
T=T+ X
DO 120 [ = LOY,EN
M(1,1) = H(1,I) - X
S = ABS(H(EN,%A)) + ABS(H(NA,EN12))
X=0,75 * 3§
Y =X
W o= ~0.4375 * S * S
ITS = ITS + 1
LOOK FOR TWO CONSECUTIVE SMALL SUB-DIACONAL FELEMENTS
k%% FOR M=EN~2 STEP ~1 UNTIL L DO *#*
PO 140 MM = L, F\M2
M =FENM2 + L - MH
2Z = 1M,
R =X - 72
Y - 27
(R * S ~ ) / HOHLM) + 101,H4L)
HCM4L,M41) = 722 =R ~ S
= H(M+2,!141)
= ABS(P) + ABS(Q) + ARS(R)
= p/s
= Q/S
R = R/S
IFCM WEQ. L)Y GO TO 150
TFCABRSCH(M, =1 ))*(ARS (D) + ARS(R)) LE. HACHEP*ARS(D)

T nAIO TN
[
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X * (ABS(H(M—=1,M4~1))+ARS(ZZ)+ABS(H(M+1,:1+1))))
X GO TO 150
140 CONTINUE
150 MP2 =M + 2
DO 160 T = MP2, EN
WI,1-2) = 0.0
IF(I .EQ. MP2) GO TO 160
H(I,I-3) = 0.0
160 CONTINUE
C * DOUBLE (R STEP FCR ROWS L TO EN AND COLUMNS !f TO EN *
DO 260 K = M, NA
MNOTLAS = K .NE. NA
IF (K .EQ. M) GO TO 170
P = H(K,K-1)
Q = H(K+l,K~1)
R = 0.0
IF (MOTLAS) R = H(K+2,K~1)
X = ABS(P) + ABS(Q) + ABS(R)
IF(X .EN. 0.0) GO TO 260
P = P/X
Q = /X
. R sR/x
170 S = SIGN(SQRT(P*P+)*N+R*R),P)
IF(K.EQ. M) GO TO 180
H(K,K~1) = -§ * X
co TO 1990 ,
180 IF(L .NE. M) H(K,K-1) = -H(K,K-1)
190 P=P+8§
X = P/S
. Y = Q/S
" ZZ = R/S
Q = Q/p
R = R/P
*k% ROW MODIFICATION ***
PO 210 J = K, N
P = H(X,J) H} * H(K+1,J)
TF(.NOT. NOTLAS) GO TO 200
P =P+ R * [i(K+2,])
(R42,T) = H(K+42,J) -~ P * 77
200 H(X+1,J) = H(K+1,J) - P * Y

-

YT choary T
o MM Il R
. 1] . - . . .

FU PR . . AP

AOIMDIMADAY
&L SN

3 H(K,J) = H(K,J) - P * X
- 210 CONTINUE

- 0= MINO(EM,E+3)

E; c *a% COLUMN NMODTF LCATION #*%+
¥ D02310 T =1, J

r! P oaX % H(I,K) + Y * i(I,k+)
;
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IF( .NOT. NOTLAS) GO TO 220

( | P =P + 72 * U(I,K+2)

2 H(L,K+2) = H(I,K+2) = P * R
Q; 220 H(T,K+1) = H(L,K+1) - P * Q
g H(I,K) = H(I,K) ~ P

3 230 CONTINUF,

b C X%* ACCUMULATE TRANSFORMATIONS *#x%
DO 250 I = LOW, IGH
P =X * Z(L,K) + Y * 7(I,K+1)
IF( .NOT. NOTLAS) GO TO 240
P =P + 722 % 72(1,K+2)

Z(I,K+2) = Z(I,K+2) - P * R
240 ZCL,K+1) = Z(I,K+1) - P * Q
Z(I,K) = Z(I,K) ~ P
250 CONTINUE
260 CONTINUE
GO TO 70
c %% ONE ROOT FOUND *#*%
270 H(EN,EN) = X + T
EN = NA
GO TO 60
c . *%% TYO ROOTS FOUND #*##

280 P = (Y ~ X)/ 2.0
Q = P*P + W
- ZZ = SQRT(ABS(Q))
) WCEN,EN) = X + T
X = H(EN,EN)
N(NA,NA) = Y + T ‘
IF(Q .LT. 0.0) GO TO 320

c *kh REAL PAIR #**%
ZZ = P + SIGN(ZZ,P)

i A = H(EN,NA)
g S = ARS(X) + ARS(72)
- P =X /3
5- qQ =22 [/ S
- R = SQRT(P*P + Q*q)
L'.', P =P /R
B Q=qQ /R
] C *%% ROW MODIFICATION ###
X DO 290 J = NA, N
5 2ZZ = H(NA,J)
. H(NA,J) = Q*77 + P*I(FEN,J)
N H(EN,J) = Q*N(EN,J) - P*A7Z
¢ 290 CONTINUF
g c Ax% COLUMN MODIFTICATION *k#
.
t-. ——
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c *kk COLUMN MODIFICATION **#
DO 300 I =1, EN
7Z = H(I,MA)
H(I,NA) = Q*77 + P*H(I,EN)
H(I,EN) = Q*H(I,EN) - P*Z2
300 CONTINUF. ,
c *%k ACCUMULATE TRANSFORMATIONS *#+*
DO 310 I = LOW, ICH
77 = Z(1,%A)
Z(I,NA) = Q*ZZ + P*Z(I,EN)
Z(I,EN) = Q*Z(I,EN) ~ P*7Z
310 CONTINUE
CO TO 330
c k%% COMPLEX PAIR *ix
320 CONTINUE
330 EN = ENM2

GO TO 60

C FRROR ~ NO CONVERGENCE TO ETGENVALUE AFTER 30 ITRRATIONS
1000 IERR = EN

PRINT *,'EIGENVALUFE',IERR, 'DOES NOT CONVERGE.'

PRINT *,'SUGGEST INCREASING MACHEP IN MODULE H(R'
1001 RETURN

END

B-13

PSPPI U S ST JUND TR WU VS SR et




SRece B Sa e

‘4

*DECK SGEFA

D0

rXe!

SDOOO0O0O0OOO000O00a0

SUBROUTINE SGEFA(A,LDA,N, [PVT)
INTEGER LDA,N,IPVT(l),INFO
RFAL A(LDA,1)

SGEFA FACTORS A REAL MATRIX BY GAUSSTIAM SLIMINATION.
A WARNING IS PRINTED IF A ZFRO RICENVALUE IS FOUND.

ON ENTRY:

A: THE MATRIX TO BE FACTORED

LDA: THE GLOBAL LFEADING DIMENSION OF THE ARRAY A

N: THF ORDER OF THE HATRIX TO BE FACTORED.
IPVT:STORAGE ARRAY. INPUT CONTENTS WILL BE DESTROYED.

ON RETURN v
A: AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS
WHICH WERE USED TO OBTAIN IT.
IPVT: AN INTEGER VECTOR OF PIVOT INDICES
THIS IS FROM LINPACK USFR'S GUIDE,VERSION N8/14/78
" REAL T
INTEGER ISAMAX,J,K,¥P1,L,MM1

GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
INFO= 0 :
MMl= N~
IF(ML .LT. 1) GO TO 70
DO 60 K=1,N11
KPl= X+1

FIND L = PIVOT INDEX
L= ISAMAY(N-K+1,A(K,K),1)+K~1
IPVT(X)= L

ZFRO PIVOT IMPLIES THIS COLUMN [S TRIANGULARIZED
IF(A(L,K) .FQ. 0.0E0) GO TO 40

INTERCHANGE IF MECESSARY
IF(L .FQ. K) GO TO 10
T=A(L,K)

ACL,K)= A(K,X)
A(K,K)= T
10 CONTIMUF

COMPUTF. MULTIPLIFRS

T= -1, 0E0/A(K,K)
CALL SSCAL(N-K,T,A(X+1,K),1)

B-14




¢
L

C

ROV FELIMINATION WITH COLUMN TIMDEXING
DO 30 J=KP1,N
T= A(L,J)
IF(L .EQ. K) GO TO 20
A(L,J)= A(K,J)
A(K,J)= T
20 CONTINUE
CALL SAXPY(N-K,T,A(K+1,X),1,A(K+1,J),1)
30 CONTINUE
GO TO 50
40 CONTINUE
INFO= K
50 CONTINUE
60 CONTINUE
70 CONTINUF
IPVT(N)= N
IF(A(N,N) .EQ. N.OFE0) INFO= N
IF(INFO .NE. 0) THEN
PRINT *, "EIGENVALUR ', INFO,'=0 IN MODULE SGEFA.'
PRINT * 'THIS CAUSFES MODULF SGEDI TO DIVIDE BY 0.
END IF
RETURN
END

*DECK SGEDI

OO0 OGOO0

SUBROUTINE SGEDI(A,LDA,N,IPVT,U02K)
INTEGER LNDA,N,IPVT(1)
REAL A(LDA,l),WORK(1)

SGEDI COMPUTES INVERSE OF MATRIX A USING
FACTORS COMPUTED BY SGFEFA.

ON ENTRY:

A: THF OQUTPUT FROM SGEFA, REAL(LDA,I)

LNDA: THE LEADING DIMFNSION OF ARRAY A

N: THE ORDFER OF MATRIX A

IPYT: THE PIVOT VECTOR FRO!M SGEFA,INTEGER(X)
WORK: WORK VECTOR,CNONTENTS DFSTROYED,REAL(N)

ON RETURN:
A: INVERSE OF THE ORIGINAL MATRIX

FRROR CONDITION: A DIVISION RY ZERO WILL NCCUR IF THE
INPUT FACTOR CONTAINS A ZFER0O ON THE DIAGONAL.,
IT WILL NOT OCCUR IF SGEFA HAS SET INFO=0

S . PR S PRI PG Y ¢ A g . —r P SO U WIS G WP W O Dol
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h i C  THIS IS FROM LINPACK USER'S GUIDE,VERSION N8/14/78
bu REAL T

. INTEGER I,J,K,KRB,KP1,L,N¥1

o C

o C  COWPUTF INVERSE

DO 100 K=1 N
A(¥X,K)= 1,0E0/A(K,K)
T= -A(X,K)
CALL SSTAL(K-1,T,A(1,K),1)
KPl= K+1
IF(N .LT. KPl) GO TO 90
no 80 J=KP1,\N
T= A(K,J)
A(K,J)= 0.0QE0
CALL SAXPY(K,T,A(1,K),1,A(1,J),1)
80 CONTINUFE
90 CONTINUE
100 CONTINUF

fo o]

FORM INVERSE(U)*INVERSE(L)
NMl= N-1
IF(N*1 .LT. 1) GO TO 140
DO 130 KB=1,NM1
K= YM-KB
. KPl= ¥+1
o DO 110 1I=KPLl,N
WORK(I)= A(I,K)
A(I,X)= 0.0E0
110 CONTINUF
DO 120 J=XP1l,N
T= WORK(J)
CALL SAXPY(N,T,A(1,J),1,A(1,K),1)
120 CONTINUFE
L= IPVT(X)
IF(L .NF. X) CALL SSWAP(N,A(1,K),1,A(1l,L),1)
130 CONTINUFR
140 CONTINUE
RETURYN
mND
*DF.CK TSAMAX
INTEGER FUNCTION ISAMAX(N,SX,INCX)
" {SAMAX FTINDS IMDFX OF ELEMENT WITH MAYX. ARSOLUTE VALUF.
C LINPACX USFR'S GUIDF, VERSION 03/11/78
REAL SX(1),SMAX
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INTEGER I,INCX,IX,N
ISAMAX= 0

IF(N .LT. 1) RETURN
ISAHMAX= 1

IF(N .EQ. 1) RETURY
IF(INCX .EQ. 1) GO TO 20

15~ e

Ll s et
“x

(%)

a
s

CIDE FOR INCREMENT NOT FNUAL T0 1
IX= 1
SMAX= ABS(SX(1l))
IX= IX+INCX
- DO 10 T[=2,N
= IF(ABS(SX(IX)).LE.SMAX) GO TO 5
'P! ISAMAX= T
. SMAX= ABS(SX(IX))
5 IX= IX+INCX
10 CONTINUE
RETURN

an

CODE FOR INCREMENT EQUAL TO 1
20 SMAX= ARS(SX(1))
DO 30 1=2,N
IF(ABS(SX(I)).LE.SMAX) CO TO 30
ISAMAX= I
SMAX= ABS(SX(I))
30 CONTINUE
RETURN
END
*DECK SAXPY
SUBROUTINE SAXPY(N,SA,SX,INCX,SY,INCY)
CONSTANT TIMES A VECTOR PLUS A VECTOR.
USES UMROLLED LOOP FOR INCREMENTS= 1.
FROM LINPACK USER'S GUIDE,VERSION 03/11/78
REAL SX(1),SY(1),SA
INTEGER T,INCX,INCY,IX,IY,M,MP1,N
TF(M .LE. 0) RETURN :
IF(SA .EO. 0.0) RETURN
IF(INCX .E0. 1 .AND. INCY .F0O. 1) GO TO 20

oan

C
c CODE FOR UNFQUAL INCREMENTS OR FOR
c FQUAL INCREMENTS NOT EQUAL TN 1
IX= 1
TY= 1
IF(INCX.LT.0) IX= (~N+1)*INCX +1
IF(INCY.LT.0) 1Y= (~N+1)*INCY +1

B-17
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DO 10 1I=l,N
SY(IY)= SY(TIY)+ SA*SX(IX)
IX= IX+INCX :
I¥Y= IY+INCY.
10 CONTINUE
RETURN

CODF FOR BOTH INCRFMENTS FOUAL TO 1
CLEAN-UP LOOP
20 M=MOD(N,4)
IF(M .EQ. 0) GO TO 40
DO 30 I=1,M
SY(I)= SY(I)+ SA*SX(I)
30 CONTINUE.
IF(N .LT. 4) RETURN
40 MPl= M+1
DO SO I=MP1,N,4
SY(T)= SY(I)+ SA*SX(I)
SY(I+1)= SY(I+1)+ SA*SX(I+1)
SY(I+2)= SY(I+2)+ SA*SX(I+2)
SY(I+3)= SY(I+3)+ SA*SX(I+3)
SO CONTINUF
RETURN
FND
*DECK SSCAL
SUBROUTINE SSCAL(Y,SA,SX,INCX)

s Ke e

C SCALES A VECTOR BY A CONSTANT.
C  USFS UNROLLED LOOPS FOR INCREMENT EQUAL TO 1.
€ LINPACK USER'S GUIDE,VERSION 03/11/78
c
REAL SA,SX(1)
INTEGER I,INCX,M,MPL,N,NINCX
IF(N .LE. 0) RETURN
IF(INCX .EQ. 1) GO TO 20
c
C CODE FOR INCRFMENT NOT EQUAL TO 1
NINCX= N*INCX
PO 10 1I=1,NINCX,INCX
SX(I)= SA*SX(1)
10 COMTINUF
RETURN
c 4
C  CODE FOR INCREMENT EQUAL TO 1.
C CLEAN-UP LOOP

20 M= MOD(N,S)
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IF(!1 .EQ. 0) GO TO 40
DO 30 1I=1,M
SX(L)= SA*SX(I)
30 CONTINUE
IF(N .LT. 5) RETURN
40 MPl= M+l
DO 50 I=MP1,N,5
SX(I)= SA*SX(I)
SX(I+1)= SA*SX(I+l)
SX(I+2)= SA*SX(I+2)
SX(I+3)= SA*SX(I+3)
SX(I+4)= SA*SX(I+4)
S0 CONTINUE
RETURN
EMD
*DECK SSWAP :
SUBROUTINE SSWAP(N,SX,INCX,SY,INCY)
INTERCUANGES TWO VECTORS.
USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO 1.
LINPACK USER'S GUIDE,VERSION 03/11/73

aonoaan

REAL SX(1),SY(1),STEMP
INTEGER I,INCX,LICY,IX,LY,M,!HP1,N
IF(N .LE. 0) RETURN
IF(INCX .EQ. 1 .AND. INCY .FQ. 1) GO TO 20
> CODFE FOR UNEQUAL INCRFMENTS, OB EQUAL
INCREMENTS NOT EQUAL TO 1.
IX= 1
IY=1
IF(INCX .LT. 0) IX= (~N+1)*INCX+l
IF(INCY .LT. 0) IY¥= (~N+1)*INCY+l
DO 10 I=1,N :
STEMP= SX(IX)
SX(IX)= SY(IY)
SY(IY)= STEMP
IX= IX+INCX
IY= IY+INCY
10 CONTIMNE
RETUR
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C CODE FNR BOTH INCREMENTS EQUAL TO 1.
C CLEAN-UP LOOP

20 M= MOD(N,3)
IF(M .EQ. 0) GO TO 40
D0 30 TI=1,M :
STEMP= SX(T)
SX(I)= SY(I)
SY(I)= STEMP

30 CONTINUE
IF(N .LT. 3) RETURN

40 MPl= M+1
DO 50 TI=MP1,N,3
STEMP= SX(I)
SX(I)= SY(I)
SY(I)= STEMP
STEMP= SX(I+1)
SX(I+1)= SY(I+1)
SY(I+1)= STEMP
STEMP= SX(I+2)
SX(I+2)= SY(I+2)
SY(I+2)= STEMP

50 CONTINUE
RETURN
END
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